研究生: |
謝信鴻 |
---|---|
論文名稱: |
On Hilbert-Kunz Function of Binomial Hypersurfaces |
指導教授: | 洪有情 |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
畢業學年度: | 85 |
語文別: | 英文 |
論文頁數: | 30 |
中文關鍵詞: | Hilbert-Kunz Function 、Binomial Hypersurfaces |
論文種類: | 學術論文 |
相關次數: | 點閱:257 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
設 (R, m) 為一個完備局部noetherian Z/(p) -代數,m[n] 是m的第Pn個Frobenius乘冪,即m[n] 是由m的元素之Pn次方所生成的理想。令en(R) 代表R/m[n] 的長度,函數n|→en (R) 則稱為R的 Hilbert-Kunz函數。
設F是一個特徵p > 0的體,S=F〔|S1,...,Xr,Y1,...,Ys,Z1,...,Zt|〕。在本論文中,利用Groebner基底,我們探討二項超曲面之Hilbert-Kunz函數:
f:=X1(a1...Xr(ar))Y1(b1)...Ys(bs)+Y1(c1)...Ys(cs)Z1(d1))...Zt(dr)
其中,對於每一個k,bk≧ck。令R=S/<f>,在第二節我們討論r≧1的情形;而在第三節則討論r=0的情形。在命題2.7和3.7,我們精確地找出R的Hilbert-Kunz函數,而在定理2.8和3.8,當n充分大時,我們證明了這些fk (n)均是n的週期函數。
至於一般的二項超曲面,要精確找出Hilbert-Kunz函數,那就更複雜了。
Let (R,m) be a complete local noetherian Z/(p)-algebra, and m[n] the Pn-th Frobenius power of m, i.e. the ideal generated by the Pn -th powers of the elements of m . Let en(R) be the length of R/m[n]. The function n|→en (R) is called the Hilbert-Kunz function of R.
Let F be a field of characteristic p > 0 and S=F〔|S1,...,Xr,Y1,...,Ys,Z1,...,Zt|〕. In this article, by making use of Froebner basis, we determine the Hilbert-Kunz function of binomial hypersurfaces of the form:
f:=X1(a1...Xr(ar))Y1(b1)...Ys(bs)+Y1(c1)...Ys(cs)Z1(d1))...Zt(dr)
with bk≧ck for each k. LetR=S/<f>,. In Section 2, we discuss the case r≧1 and the discussion for r=0 is in section 3. In Proposition 2.7 and 3.7, we explicitly determine the Hilbert-Kunz function, and in Theorem 2.8 and 3.8, we show that for n>>0, where λ is a rational number and fk(n) is an eventually periodic function of n for each k.
For the general binomial hypersufaces, it is more complicated to explicitly determine the Hibert-Kunz function.