簡易檢索 / 詳目顯示

研究生: 李尉賑
Lee, Wei-Chen
論文名稱: 二維中孔硒化鎘半導體材料合成、結構解析與應用
Syntheses, Characterizations and Applications of Mesoporous 2D CdSe Quantum Structures
指導教授: 劉沂欣
Liu, Yi-Hsin
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 90
中文關鍵詞: 硒化鎘二維材料有機-無機混合材料催化半導體二維半導體
英文關鍵詞: Organic-Inorganic Hybrid Materials, space group, 2D semiconductor
DOI URL: http://doi.org/10.6345/NTNU202001382
論文種類: 學術論文
相關次數: 點閱:154下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一章 緒論 1 1.1硒化鎘奈米材料 1 1.2二維半導體及催化應用 5 1.3 孔洞半導體背景與前景 7 1.4研究動機 12 第二章 實驗方法 13 2.1化學藥品 13 2.2 合成二維硒化鎘奈米片 14 2.2.1 硒前驅物之製備 14 2.2.2鎘前驅物之製備 15 2.2.3二維硒化鎘奈米片合成及純化 15 2.3 二維硒化鎘之修飾 17 2.3.1 路易斯酸後修飾CdSe(en)0.5 實驗 17 2.3.2硫化奈米片製備實驗 18 2.4 鑑定儀器 18 2.4.1 UV-Vis吸收光譜儀 19 2.4.2 漫反射吸收光譜儀 19 2.4.3 螢光光譜儀 19 2.4.4 穿透式電子顯微鏡 19 2.4.5 掃描式電子顯微鏡 20 2.4.6 場發射掃描穿透式球差修正電子顯微鏡 20 2.4.7 X光繞射儀 23 2.4.8 元素分析儀 24 2.4.9 X光吸收光譜儀 25 2.4.10 低壓汞燈 29 第三章 結果與討論 30 3.1 中孔硒化鎘(斜方晶系) 30 3.1.1 中孔形貌 30 3.1.2 成分分析 35 3.1.3 電子結構 38 3.1.4 催化活性 42 3.1.5 精細結構 44 3.1.6中孔洞奈米片生成機制 52 3.1.7中孔洞奈米片催化應用 60 3.2 中孔硒化鎘(六方晶系) 63 3.2.1 結構及形貌 63 3.2.2 元素分析 68 3.2.3 電子結構 69 3.2.4 精細結構 70 3.2.5 生長機制 75 第四章 結論與未來展望 81 參考文獻 83

    1. Murray, C. B.; Norris, D. J.; Bawendi, M. G., Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc., 1993, 115, 8706-8715.
    2. Murray, C. B.; Kagan, C. R.; Bawendi, M. G., Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices, Science, 1995, 270, 1335.
    3. Chartier, P.; Nguyen Cong, H.; Sene, C., Hybrid organic–inorganic photovoltaı̈c junctions:: case of the all thin-film CdSe/poly(3-methylthiophene) junction, Sol. Energy Mater. Sol. Cells, 1998, 52, 413-421.
    4. Huang, X.; Li, J.; Zhang, Y.; Mascarenhas, A., From 1D Chain to 3D Network:  Tuning Hybrid II-VI Nanostructures and Their Optical Properties, J. Am. Chem. Soc., 2003, 125, 7049-7055.
    5. Liu, Y.; Qiu, H. Y.; Xu, Y.; Wu, D.; Li, M. J.; Jiang, J. X.; Lai, G. Q. Selective synthesis of wurtzite CdSe nanorods and zinc blend CdSe nanocrystals through a convenient solvothermal route, J. Nanoparticle Res., 2007, 9, 745-752.
    6. 徐晟智(2017)。二維結構稀磁性硒化鎘奈米片之合成、鑑定與應用。台北:國立臺灣師範大學。
    7. Han, Z.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D., Robust Photogeneration of H2 in Water Using Semiconductor Nanocrystals and a Nickel Catalyst, Science, 2012, 338, 1321.
    8. Chepape, K. F.; Mofokeng, T. P.; Nyamukamba, P.; Mubiayi, K. P.; Moloto, M. J., Enhancing Photocatalytic Degradation of Methyl Blue Using PVP-Capped and Uncapped CdSe Nanoparticles, J. Nanotechnol., 2017, 2017, 5340784.
    9. Mir, S. H.; Nagahara, L. A.; Thundat, T.; Mokarian-Tabari, P.; Furukawa, H.; Khosla, A., Review—Organic-Inorganic Hybrid Functional Materials: An Integrated Platform for Applied Technologies, J. Electrochem. Soc., 2018, 165, B3137-B3156.
    10. Voiry, D.; Shin, H. S.; Loh, K. P.; Chhowalla, M., Low-dimensional catalysts for hydrogen evolution and CO2 reduction, Nat. Rev. Chem., 2018, 2, 0105.
    11. Deng, D.; Novoselov, K. S.; Fu, Q.; Zheng, N.; Tian, Z.; Bao, X., Catalysis with two-dimensional materials and their heterostructures, Nat. Nanotechnol., 2016, 11, 218-230.
    12. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K., Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. U.S.A, 2005, 102, 10451.
    13. Nasilowski, M.; Mahler, B.; Lhuillier, E.; Ithurria, S.; Dubertret, B., Two-Dimensional Colloidal Nanocrystals, Chem. Rev., 2016, 116, 10934-10982.
    14. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A., 2D transition metal dichalcogenides, Nature Reviews Materials, 2017, 2, 17033.
    15. Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M., A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater., 2009, 8, 76-80.
    16. Yu, J.; Chen, R., Optical properties and applications of two-dimensional CdSe nanoplatelets, InfoMat, 2020, 2, 905-927
    17. Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. L., Colloidal nanoplatelets with two-dimensional electronic structure, Nat. Mater., 2011, 10, 936-941.
    18. Delikanli, S.; Yu, G.; Yeltik, A.; Bose, S.; Erdem, T.; Yu, J.; Erdem, O.; Sharma, M.; Sharma, V. K.; Quliyeva, U.; Shendre, S.; Dang, C.; Zhang, D. H.; Sum, T. C.; Fan, W.; Demir, H. V., Ultrathin Highly Luminescent Two-Monolayer Colloidal CdSe Nanoplatelets, Adv. Funct. Mater., 2019, 29, 1901028.
    19. Sharma, M.; Gungor, K.; Yeltik, A.; Olutas, M.; Guzelturk, B.; Kelestemur, Y.; Erdem, T.; Delikanli, S.; McBride, J. R.; Demir, H. V., Near-Unity Emitting Copper-Doped Colloidal Semiconductor Quantum Wells for Luminescent Solar Concentrators, Adv. Mater., 2017, 29, 1700821.
    20. Sharma, M.; Olutas, M.; Yeltik, A.; Kelestemur, Y.; Sharma, A.; Delikanli, S.; Guzelturk, B.; Gungor, K.; McBride, J. R.; Demir, H. V., Understanding the Journey of Dopant Copper Ions in Atomically Flat Colloidal Nanocrystals of CdSe Nanoplatelets Using Partial Cation Exchange Reactions, Chem. Mater., 2018, 30, 3265-3275.
    21. Khan, A. H.; Pinchetti, V.; Tanghe, I.; Dang, Z.; Martín-García, B.; Hens, Z.; Van Thourhout, D.; Geiregat, P.; Brovelli, S.; Moreels, I., Tunable and Efficient Red to Near-Infrared Photoluminescence by Synergistic Exploitation of Core and Surface Silver Doping of CdSe Nanoplatelets, Chem. Mater., 2019, 31, 1450-1459.
    22. Dufour, M.; Izquierdo, E.; Livache, C.; Martinez, B.; Silly, M. G.; Pons, T.; Lhuillier, E.; Delerue, C.; Ithurria, S., Doping as a Strategy to Tune Color of 2D Colloidal Nanoplatelets, ACS Appl. Mater. Interfaces, 2019, 11, 10128-10134.
    23. Beaulac, R.; Archer, P. I.; van Rijssel, J.; Meijerink, A.; Gamelin, D. R., Exciton Storage by Mn2+ in Colloidal Mn2+-Doped CdSe Quantum Dots, Nano Lett., 2008, 8, 2949-2953.
    24. Giovanella, U.; Pasini, M.; Lorenzon, M.; Galeotti, F.; Lucchi, C.; Meinardi, F.; Luzzati, S.; Dubertret, B.; Brovelli, S., Efficient Solution-Processed Nanoplatelet-Based Light-Emitting Diodes with High Operational Stability in Air, Nano Lett., 2018, 18, 3441-3448.
    25. Zhang, F.; Wang, S.; Wang, L.; Lin, Q.; Shen, H.; Cao, W.; Yang, C.; Wang, H.; Yu, L.; Du, Z.; Xue, J.; Li, L. S., Super color purity green quantum dot light-emitting diodes fabricated by using CdSe/CdS nanoplatelets, Nanoscale, 2016, 8, 12182-12188.
    26. Chauhan, H.; Kumar, Y.; Dana, J.; Satpati, B.; Ghosh, H. N.; Deka, S., Photoinduced ultrafast charge separation in colloidal 2-dimensional CdSe/CdS-Au hybrid nanoplatelets and corresponding application in photocatalysis, Nanoscale, 2016, 8, 15802-15812.
    27. Sigle, D. O.; Zhang, L.; Ithurria, S.; Dubertret, B.; Baumberg, J. J., Ultrathin CdSe in Plasmonic Nanogaps for Enhanced Photocatalytic Water Splitting, J. Phys. Chem. Lett., 2015, 6, 1099-1103.
    28. Naskar, S.; Schlosser, A.; Miethe, J. F.; Steinbach, F.; Feldhoff, A.; Bigall, N. C., Site-Selective Noble Metal Growth on CdSe Nanoplatelets, Chem. Mater., 2015, 27, 3159-3166.
    29. Klein, N.; Senkovska, I.; Gedrich, K.; Stoeck, U.; Henschel, A.; Mueller, U.; Kaskel, S., A Mesoporous Metal–Organic Framework, Angew. Chem. Int. Ed., 2009, 48, 9954-9957.
    30. Song, L.; Zhang, J.; Sun, L.; Xu, F.; Li, F.; Zhang, H.; Si, X.; Jiao, C.; Li, Z.; Liu, S.; Liu, Y.; Zhou, H.; Sun, D.; Du, Y.; Cao, Z.; Gabelica, Z., Mesoporous metal–organic frameworks: design and applications, Energy Environ. Sci, 2012, 5, 7508-7520.
    31. Górka, J.; Fulvio, P. F.; Pikus, S.; Jaroniec, M., Mesoporous metal organic framework–boehmite and silica composites, Chem. Commun., 2010, 46, 6798-6800.
    32. Dogutan, D. K.; Nocera, D. G., Artificial Photosynthesis at Efficiencies Greatly Exceeding That of Natural Photosynthesis, Acc. Chem. Res., 2019, 52, 3143-3148.
    33. Liu, C.; Sakimoto, K. K.; Colón, B. C.; Silver, P. A.; Nocera, D. G., Ambient nitrogen reduction cycle using a hybrid inorganic–biological system, PNAS, 2017, 201706371.
    34. Huynh, M.; Shi, C.; Billinge, S. J. L.; Nocera, D. G., Nature of Activated Manganese Oxide for Oxygen Evolution, J. Am. Chem. Soc., 2015, 137, 14887-14904.
    35. Bediako, D. K.; Surendranath, Y.; Nocera, D. G., Mechanistic Studies of the Oxygen Evolution Reaction Mediated by a Nickel–Borate Thin Film Electrocatalyst, J. Am. Chem. Soc., 2013, 135, 3662-3674.
    36. Liu, C.; Colón, B. C.; Ziesack, M.; Silver, P. A.; Nocera, D. G., Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis, Science, 2016, 352, 1210.
    37. Kim, T. J.; Jung, Y. H.; Zhang, H.; Kim, K.; Lee, J.; Ma, Z., Photolithography-Based Nanopatterning Using Re-entrant Photoresist Profile, ACS Appl. Mater. Interfaces, 2018, 10, 8117-8123.
    38. Marneffe, J.-F. d.; Chan, B. T.; Spieser, M.; Vereecke, G.; Naumov, S.; Vanhaeren, D.; Wolf, H.; Knoll, A. W., Conversion of a Patterned Organic Resist into a High Performance Inorganic Hard Mask for High Resolution Pattern Transfer, ACS Nano, 2018, 12, 11152-11160.
    39. Marneffe, J.-F. d.; Yamaguchi, T.; Fujikawa, M.; Rezvanov, A.; Chanson, R.; Zhang, J.; Otell, Z. e.; Babaei-Gavan, K.; Nozawa, S.; Kikuchi, Y.; Maekawa, K., Use of a Thermally Degradable Chemical Vapor Deposited Polymer Film for Low Damage Plasma Processing of Highly Porous Dielectrics, ACS Appl. Electron. Mater., 2019, 1, 2602-2611.
    40. Yu, L.; Li, G.; Zhang, X.; Ba, X.; Shi, G.; Li, Y.; Wong, P. K.; Yu, J. C.; Yu, Y., Enhanced Activity and Stability of Carbon-Decorated Cuprous Oxide Mesoporous Nanorods for CO2 Reduction in Artificial Photosynthesis, ACS Catal., 2016, 6, 6444-6454.
    41. Li, Z.; Cheng, H.; Li, Y.; Zhang, W.; Yu, Y., H2O2 Treated CdS with Enhanced Activity and Improved Stability by a Weak Negative Bias for CO2 Photoelectrocatalytic Reduction, ACS Sustain. Chem. Eng., 2019, 7, 4325-4334.
    42. Xue, N.; Lin, Z.; Li, P.; Diao, P.; Zhang, Q., Sulfur-Doped CoSe2 Porous Nanosheets as Efficient Electrocatalysts for the Hydrogen Evolution Reaction, ACS Appl. Mater. Interfaces, 2020, 12, 28288-28297.
    43. 謝宗恩(2018)。魔術尺寸-硒化鎘奈米團簇物之結構解析與陰/陽離子取代之二維結構硒化鎘奈米片之應用探討。台北:國立臺灣師範大學。
    44. Tonny, K. N.; Rafique, R.; Sharmin, A.; Bashar, M. S.; Mahmood, Z. H., Electrical, optical and structural properties of transparent conducting Al doped ZnO (AZO) deposited by sol-gel spin coating, AIP Advances, 2018, 8, 065307.
    45. Li, F.; Men, Z.; Li, S.; Wang, S.; Li, Z.; Sun, C., Study of hydrogen bonding in ethanol-water binary solutions by Raman spectroscopy, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 189, 621-624.
    46. Zubair, M.; Mustafa, M.; Ali, A.; Doh, Y. H.; Choi, K. H., Improvement of solution based conjugate polymer organic light emitting diode by ZnO–graphene quantum dots, J. Mater. Sci.: Mater. Electron, 2015, 26, 3344-3351.
    47. Xu, Y.-N.; Ching, W. Y., Electronic, optical, and structural properties of some wurtzite crystals, Phys. Rev. B, 1993, 48, 4335-4351.
    48. Ziolkowska, D. A.; Jasinski, J. B.; Hamankiewicz, B.; Korona, K. P.; Wu, S.-H.; Czerwinski, A., In Situ XRD and TEM Studies of Sol-Gel-Based Synthesis of LiFePO4, Cryst. Growth Des, 2016, 16, 5006-5013.
    49. Manova, D.; Mändl, S., In situ XRD measurements to explore phase formation in the near surface region, J. Appl. Phys., 2019, 126, 200901.
    50. Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 2015, 87.
    51. Penner-Hahn, J. E., X-ray Absorption Spectroscopy. 2001.
    52. Abuín, M.; Serrano, A.; Chaboy, J.; García, M. A.; Carmona, N., XAS study of Mn, Fe and Cu as indicators of historical glass decay, J. Anal. At. Spectrom., 2013, 28, 1118-1124.
    53. Vladimir P. Z., Kirkendall effect in the two-dimensional lattice-gas model, Phys. Rev. E, 2019, 99, 012132

    無法下載圖示 本全文未授權公開
    QR CODE