簡易檢索 / 詳目顯示

研究生: 方森婭
Silvia Fontana
論文名稱: 紅火蟻的社會超級基因有許多基因和跳躍子上的拷貝數變異
The fire ant social supergene is characterized by extensive gene and transposable element copy number variation
指導教授: 王忠信
John Wang
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 114
中文關鍵詞: 紅火蟻超級基因社會染色體基因重覆跳躍子
英文關鍵詞: fire ant, supergene, social chromosome, gene duplication, transposons
DOI URL: http://doi.org/10.6345/NTNU202000202
論文種類: 學術論文
相關次數: 點閱:125下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The fire ant Solenopsis invicta shows two distinct social forms (monogyne and polygyne colonies, with one and multiple queens, respectively) under genetic control of a ~12.5 to 20 Mb supergene. The supergene includes ~600 genes linked together by multiple inversions, which prevents recombination between the two variants, ‘Social B’ (SB) and ‘Social b’ (Sb). In monogyne colonies all individuals carry only the SB allele, while in polygyne colonies, some individuals carry the Sb allele (all queens are heterozygotes SB/Sb, workers can be either SB/SB or SB/Sb and haploid males SB or Sb).
    In this study we characterized genes with copy number variation between SB and Sb-carrying individuals. We showed extensive acquisition of gene duplicates in the Sb genome, with some likely involved in polygyne-related phenotypes. We found 260 genes with copy number differences between SB and Sb, of which 239 have greater copy number in Sb.
    We observed transposable element (TE) accumulation on Sb, likely due to the accumulation of repetitive elements on the non-recombining chromosome. We found a weak correlation between TE copy number and differential expression, suggesting some TEs may still be proliferating in Sb while many of the duplicated TEs have already been silenced. Characterization of the TEs revealed showed the BEL family (LTR retrotransposons) was disproportionately duplicated in the supergene.
    While the presence of TEs in supergenes is well documented, little is known about duplication of non-TE genes and their possible adaptive role. Among the 115 non-TE genes with higher copy in Sb, we found genes with putative polygyne related functions, such as juvenile hormone synthesis, odorant reception, and innate immunity. Interestingly, enzymes responsible for cuticular hydrocarbon synthesis were highly represented.
    We identified candidate duplications, and conducted detailed examination of a desaturase and an elongase, as potentially responsible for different cuticular hydrocarbons profiles in SB/SB and SB/Sb queens. These genes, which are likely beneficial for polygyne ants and important for queen recognition, seem to have translocated into the supergene from other chromosomes and proliferated by multiple duplication events.
    Overall, our results suggest that gene duplications may be an important factor leading to monogyne and polygyne ant societies.

    Acknowledgments i Abstract ii Table of Contents iv List of Tables vii List of Figures viii CHAPTER 1: Introduction 1 1.1. The fire ant Solenopsis invicta 1 1.2. Supergenes 3 1.3. Transposable elements (TEs) 4 1.4. Hypothesis 5 CHAPTER 2: Materials and Methods 8 2.1. Collection of transposable elements (TEs) and other fire ant genes to detect copy number variation (CNV) 8 2.1.1. Motivations 8 2.1.2. Trinity de novo assembly of 13 RNA-seq libraries for the collection of fire ant TEs 8 2.1.3. Collection of fire ant TEs 11 2.1.4. Collection of fire ant non-TE genes 12 2.1.5. Collection of TEs and other fire ant genes (nr-sinv-ref) to detect copy number variation (CNV) 12 2.2. Copy number variation (CNV) analysis 12 2.2.1. SB versus Sb whole genome sequencing reads 12 2.2.2. DNA read alignment to nr-sinv-ref 13 2.2.3. Copy number variation (CNV) analysis 14 2.3. Duplicated gene annotation and gene function over-representation analysis 15 2.4. DNA real-time quantitative PCR (qPCR) and digital droplet PCR (ddPCR) to detect copy number 16 2.4.1. Ant Sampling 16 2.4.2. DNA real-time quantitative PCR (qPCR): goals, primer design, and protocol 16 2.4.3. DNA digital droplet PCR (ddPCR): goals, primer design, and protocol 18 2.5. Gene expression of CNV genes 19 2.5.1. Differential expression (DE) analysis of CNV genes 19 2.5.2. Absolute expression analysis of CNV genes 21 2.6. Genomic analysis of CNV genes 21 2.6.1. Assembly and linkage group construction of SB and Sb genomes 21 2.6.2. Genomic analysis of CNV genes 22 2.6.3. Placement of SB contigs 000611F and 000344F onto chr 5 and chr 3, respectively 22 2.7. Analysis of desaturase and elongase copies 23 CHAPTER 3: Results 25 3.1. CNV analysis: duplicated TE and non-TE gene discovery 25 3.2. Validation of CNV results with quantitative real-time PCR (qPCR) and droplet digital PCR (ddPCR) 26 3.3. Higher transposon expression is weakly correlated to higher copy number 27 3.4. Enzymes involved in cuticular hydrocarbon (CHC) synthesis are highly duplicated in Sb and over-expressed in SB/Sb queens 29 3.5. CHC enzyme genes have copies on supergene and non-supergene chromosomes 31 3.6. Desaturase and elongase have potentially functional copies on Sb 32 CHAPTER 4: Discussion 34 4.1. TEs accumulation on Sb 34 4.2. Different functions of Non-TE genes with CNV between the Sb and SB fire ant genomes 37 4.3. CHC gene copies may have Sb functions 41 4.4. The role of TEs in gene duplication 44 CHAPTER 5: Conclusions 45 Tables 47 Figures 63 References 86 Appendices 98

    Albertin, C. B., Simakov, O., Mitros, T., Wang, Z. Y., Pungor, J. R., Edsinger-Gonzales, E., . . . Rokhsar, D. S. (2015). The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature, 524(7564), 220-224. doi:10.1038/nature14668
    Allen, C., Valles, S. M., & Strong, C. A. (2011). Multiple virus infections occur in individual polygyne and monogyne Solenopsis invicta ants. Journal of Invertebrate Pathology, 107(2), 107-111. doi:10.1016/j.jip.2011.03.005
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. doi:10.1016/S0022-2836(05)80360-2
    Ascunce, M. S., Yang, C.-C., Oakey, J., Calcaterra, L., Wu, W.-J., Shih, C.-J., . . . Shoemaker, D. (2011). Global invasion history of the fire ant Solenopsis invicta. Science, 331(6020), 1066-1068. doi:10.1126/science.1198734
    Bachtrog, D. (2003). Accumulation of Spock and Worf, two novel non-LTR retrotransposons, on the neo-Y chromosome of Drosophila miranda. Molecular Biology and Evolution, 20(2), 173-181. doi:10.1093/molbev/msg035
    Bachtrog, D. (2006). A dynamic view of sex chromosome evolution. Current Opinion in Genetics & Development, 16(6), 578-585. doi:10.1016/j.gde.2006.10.007
    Bachtrog, D. (2013). Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nature Reviews Genetics, 14(2), 113-124. doi:10.1038/nrg3366
    Bao, W., Kojima, K. K., & Kohany, O. (2015). Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA, 1-6. doi:10.1186/s13100-015-0041-9
    Bartolomé, C., Maside, X., & Charlesworth, B. (2002). On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. Molecular Biology and Evolution, 19(6), 926-937.
    Bergero, R., & Charlesworth, D. (2009). The evolution of restricted recombination in sex chromosomes. Trends in Ecology & Evolution, 24(2), 94-102. doi:10.1016/j.tree.2008.09.010
    Blomquist, G. J., & Bagnères, A.-G. (2010). Insect hydrocarbons: biology, biochemistry, and chemical ecology [Image]: Cambridge University Press.
    Bonasio, R., Zhang, G., Ye, C., Mutti, N. S., Fang, X., Qin, N., . . . Liebig, J. (2010). Genomic Comparison of the Ants Camponotus floridanus and Harpegnathos saltator. Science, 329(5995), 1068-1071. doi:10.1126/science.1192428
    Bowen, N. J., & McDonald, J. F. (2001). Drosophila euchromatic LTR retrotransposons are much younger than the host species in which they reside. Genome Res, 11(9), 1527-1540. doi:10.1101/gr.164201
    Brennecke, J., Aravin, A. A., Stark, A., Dus, M., Kellis, M., Sachidanandam, R., & Hannon, G. J. (2007). Discrete Small RNA-Generating Loci as Master Regulators of Transposon Activity in Drosophila. Cell, 128(6), 1089-1103. doi:10.1016/j.cell.2007.01.043
    Burkhard, P., Stetefeld, J., & Strelkov, S. V. (2001). Coiled coils: a highly versatile protein folding motif. Trends in cell biology, 11(2), 82-88.
    Chan, J. D., Zhang, D., Liu, X., Zarowiecki, M. Z., Berriman, M., & Marchant, J. S. (2016). Dataset for a Dugesia japonica de novo transcriptome assembly, utilized for defining the voltage-gated like ion channel superfamily. Data in Brief, 9(C), 1044-1047. doi:10.1016/j.dib.2016.11.022
    Charlesworth, B., & Charlesworth, D. (2000). The degeneration of Y chromosomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 355(1403), 1563-1572. doi:10.1098/rstb.2000.0717
    Chen, J. S. C., Shen, C.-H., & Lee, H.-J. (2006). Monogynous and Polygynous Red Imported Fire Ants, <I>Solenopsis invicta</I> Buren (Hymenoptera: Formicidae), in Taiwan. Environmental Entomology, 35(1), 167-172. doi:10.1603/0046-225X-35.1.167
    Chin, C.-S., Alexander, D. H., Marks, P., Klammer, A. A., Drake, J., Heiner, C., . . . Korlach, J. (2013). Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nature Methods, 10(6), 563-569. doi:10.1038/nmeth.2474
    Chiu, Y.-K., Hsu, J.-C., Chang, T., Huang, Y.-C., & Wang, J. in review. Mutagenesis Mediated by CRISPR/Cas9 in the Red Imported Fire Ant, Solenopsis invicta
    Chuong, E. B., Elde, N. C., & Feschotte, C. (2016). Regulatory activities of transposable elements: from conflicts to benefits. Nature Reviews Genetics. doi:10.1038/nrg.2016.139
    Chuong, E. B., Elde, N. C., & Feschotte, C. (2016). Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science, 351(6277), 1083-1087. doi:10.1126/science.aad5497
    Colborn, J. M., Byrd, B. D., Koita, O. A., & Krogstad, D. J. (2008). Estimation of copy number using SYBR Green: confounding by AT-rich DNA and by variation in amplicon length. The American journal of tropical medicine and hygiene, 79(6), 887-892.
    Conesa, A., Gotz, S., Garcia-Gomez, J. M., Terol, J., Talon, M., & Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18), 3674-3676. doi:10.1093/bioinformatics/bti610
    Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., . . . Mortazavi, A. (2016). A survey of best practices for RNA-seq data analysis. Genome Biology, 1-19. doi:10.1186/s13059-016-0881-8
    Connallon, T., & Clark, A. G. (2010). Gene duplication, gene conversion and the evolution of the Y chromosome. Genetics, 186(1), 277-286. doi:10.1534/genetics.110.116756
    Cusson, M., Béliveau, C., Sen, S. E., Vandermoten, S., Rutledge, R. G., Stewart, D., . . . Grant, G. H. (2006). Characterization and tissue-specific expression of two lepidopteran farnesyl diphosphate synthase homologs: Implications for the biosynthesis of ethyl-substituted juvenile hormones. Proteins: Structure, Function, and Bioinformatics, 65(3), 742-758. doi:10.1002/prot.21057
    Dang, V. D., Cohanim, A. B., Fontana, S., Privman, E., & Wang, J. (2019). Has gene expression neofunctionalization in the fire ant antennae contributed to queen discrimination behavior? Ecology and Evolution. doi:10.1002/ece3.5748
    Davis, J. K., Mittel, L. B., Lowman, J. J., Thomas, P. J., Maney, D. L., Martin, C. L., . . . Thomas, J. W. (2011). Haplotype-Based Genomic Sequencing of a Chromosomal Polymorphism in the White-Throated Sparrow (Zonotrichia albicollis). Journal of Heredity, 102(4), 380-390. doi:10.1093/jhered/esr043
    Dolgin, E. S., & Charlesworth, B. (2008). The Effects of Recombination Rate on the Distribution and Abundance of Transposable Elements. Genetics, 178(4), 2169-2177. doi:10.1534/genetics.107.082743
    Eliyahu, D., Ross, K. G., Haight, K. L., Keller, L., & Liebig, J. (2011). Venom Alkaloid and Cuticular Hydrocarbon Profiles Are Associated with Social Organization, Queen Fertility Status, and Queen Genotype in the Fire Ant Solenopsis invicta. Journal of Chemical Ecology, 37(11), 1242-1254. doi:10.1007/s10886-011-0037-y
    Ellison, C. E., & Bachtrog, D. (2013). Dosage compensation via transposable element mediated rewiring of a regulatory network. Science. doi:10.1126/science.1240411
    Fang, S., Ting, C. T., Lee, C. R., Chu, K. H., Wang, C. C., & Tsaur, S. C. (2009). Molecular Evolution and Functional Diversification of Fatty Acid Desaturases after Recurrent Gene Duplication in Drosophila. Molecular Biology and Evolution, 26(7), 1447-1456. doi:10.1093/molbev/msp057
    Feschotte, C., & Pritham, E. J. (2006). DNA transposons and the evolution of eukaryotic genomes. Genetics, 41, 331-368. doi:10.1146/annurev.genet.40.110405.090448
    Finck, J., Berdan, E. L., Mayer, F., Ronacher, B., & Geiselhardt, S. (2016). Divergence of cuticular hydrocarbons in two sympatric grasshopper species and the evolution of fatty acid synthases and elongases across insects. Scientific reports, 1-13. doi:10.1038/srep33695
    Finnegan, D. J. (1989). Eukariotic transposable elements and genome evolution. Trends in Genetics, 1-5.
    Fritz, G. N., Vander Meer, R. K., & Preston, C. A. (2006). Selective male mortality in the red imported fire ant, Solenopsis invicta. Genetics, 173(1), 207-213. doi:10.1534/genetics.106.056358
    Fu, L., Niu, B., Zhu, Z., Wu, S., & Li, W. (2012). CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 28(23), 3150-3152. doi:10.1093/bioinformatics/bts565
    Girard, L., & Freeling, M. (1999). Regulatory changes as a consequence of transposon insertion. Developmental genetics, 25(4), 291-296. doi:10.1002/(SICI)1520-6408(1999)25:4<291::AID-DVG2>3.0.CO;2-5
    González, D., Zhao, Q., McMahan, C., Velasquez, D., Haskins, W. E., Sponsel, V., . . . Renthal, R. (2009). The major antennal chemosensory protein of red imported fire ant workers. Insect Molecular Biology, 18(3), 395-404. doi:10.1111/j.1365-2583.2009.00883.x
    Gotzek, D., Robertson, H. M., Wurm, Y., & Shoemaker, D. (2011). Odorant Binding Proteins of the Red Imported Fire Ant, Solenopsis invicta: An Example of the Problems Facing the Analysis of Widely Divergent Proteins. PLoS ONE, 6(1), e16289-16289. doi:10.1371/journal.pone.0016289
    Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., . . . Regev, A. (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols, 8(8), 1494-1512. doi:10.1038/nprot.2013.084
    Hallar, B. L., Krieger, M. J. B., & Ross, K. G. (2006). Potential cause of lethality of an allele implicated in social evolution in fire ants. Genetica, 131(1), 69-79. doi:10.1007/s10709-006-9114-5
    Hallast, P., Balaresque, P., Bowden, G. R., Ballereau, S., & Jobling, M. A. (2013). Recombination Dynamics of a Human Y-Chromosomal Palindrome: Rapid GC-Biased Gene Conversion, Multi-kilobase Conversion Tracts, and Rare Inversions. PLoS Genetics, 9(7), e1003666-1003611. doi:10.1371/journal.pgen.1003666
    Hanks, S. K. (2003). Genomic analysis of the eukaryotic protein kinase superfamily: a perspective. Genome Biology, 4(5), 111.
    Hashimoto, K., Yoshizawa, A. C., Okuda, S., Kuma, K., Goto, S., & Kanehisa, M. (2007). The repertoire of desaturases and elongases reveals fatty acid variations in 56 eukaryotic genomes. Journal of Lipid Research, 49(1), 183-191. doi:10.1194/jlr.M700377-JLR200
    Helmkampf, M., Cash, E., & Gadau, J. (2015). Evolution of the Insect Desaturase Gene Family with an Emphasis on Social Hymenoptera. Molecular Biology and Evolution, 32(2), 456-471. doi:10.1093/molbev/msu315
    Hölldobler, B., & Wilson, E. O. (1990). The Ants: Harvard University Press.
    Hölldobler, B., & Wilson, E. O. (1997). The number of queens: an important trait in ant evolution. Naturwissenschaften, 1-8.
    Huang, Y.-C., Dang, V. D., Chang, N.-C., & Wang, J. (2018). Multiple large inversions and breakpoint rewiring of gene expression in the evolution of the fire ant social supergene. Proceedings of the Royal Society B: Biological Sciences, 285(1878), 20180221-20180228. doi:10.1098/rspb.2018.0221
    Huang, Y.-C., Lee, C.-C., Kao, C.-Y., Chang, N.-C., Lin, C.-C., Shoemaker, D., & Wang, J. (2016). Evolution of long centromeres in fire ants. BMC evolutionary biology, 1-14. doi:10.1186/s12862-016-0760-7
    Huang, Y.-C., & Wang, J. (2013). Did the fire ant supergene evolve selfishly or socially? BioEssays, 36(2), 200-208. doi:10.1002/bies.201300103
    Ihaka, R., & Gentleman, R. (1996). R: A Language for Data Analysis and Graphics. Journal of Computational and Graphical Statistics, 5(3), 299-314. doi:10.1080/10618600.1996.10474713
    Jiang, N., Bao, Z., Zhang, X., Eddy, S. R., & Wessler, S. R. (2004). Pack-MULE transposable elements mediate gene evolution in plants. Nature. doi:10.1038/nature02945
    Keller, L., & Ross, K. G. (1993). Phenotypic basis of reproductive success in a social insect: genetic and social determinants. Science, 260(5111), 1107-1110. doi:10.1126/science.260.5111.1107
    Keller, L., & Ross, K. G. (1998). Selfish genes: a green beard in the red fire ant. 1-3. doi:10.1038/29064
    Kent, W. J. (2002). BLAT—The BLAST-Like Alignment Tool. Genome research, 12(4), 656-664. doi:10.1101/gr.229202
    Kidwell, M. G., Kidwell, J. F., & Sved, J. A. (1977). Hybrid Dysgenesis in DROSOPHILA MELANOGASTER: A Syndrome of Aberrant Traits Including Mutation, Sterility and Male Recombination. Genetics, 86(4), 813-833.
    Kidwell, M. G., & Lisch, D. R. (2001). Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution; international journal of organic evolution, 55(1), 1-24.
    Kirischian, N. L., & Wilson, J. Y. (2012). Phylogenetic and functional analyses of the cytochrome P450 family 4. Molecular Phylogenetics and Evolution, 62(1), 458-471. doi:10.1016/j.ympev.2011.10.016
    Kohany, O., Gentles, A. J., Hankus, L., & Jurka, J. (2006). Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics, 7, 474. doi:10.1186/1471-2105-7-474
    Krieger, J., & Breer, H. (1999). Olfactory reception in invertebrates. Science, 286(5440), 720-723.
    Krieger, M., & Ross, K. G. (2002). Identification of a major gene regulating complex social behavior. Science. doi:10.1126/science.1066759
    Krieger, M. J. B., & Ross, K. G. (2003). Molecular evolutionary analyses of mariners and other transposable elements in fire ants (Hymenoptera: Formicidae). Insect Molecular Biology, 12(2), 155-165.
    Krsticevic, F. J., Santos, H. L., Januario, S., Schrago, C. G., & Carvalho, A. B. (2010). Functional Copies of the Mst77F Gene on the Y Chromosome of Drosophila melanogaster. Genetics, 184(1), 295-307. doi:10.1534/genetics.109.107516
    Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33(7), 1870-1874. doi:10.1093/molbev/msw054
    Lamichhaney, S., Berglund, J., Almén, M. S., Maqbool, K., Grabherr, M., Martinez-Barrio, A., . . . Andersson, L. (2015). Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature, 518(7539), 371-375. doi:10.1038/nature14181
    Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357-359. doi:10.1038/nmeth.1923
    Lawson, L. P., Vander Meer, R. K., & Shoemaker, D. (2012). Male reproductive fitness and queen polyandry are linked to variation in the supergene Gp-9 in the fire ant Solenopsis invicta. Proceedings of the Royal Society B: Biological Sciences, 279(1741), 3217-3222. doi:10.1126/science.1156108
    Leal, W. S. (2013). Odorant Reception in Insects: Roles of Receptors, Binding Proteins, and Degrading Enzymes. Annual Review of Entomology, 58(1), 373-391. doi:10.1146/annurev-ento-120811-153635
    Lee, C.-C., & Wang, J. (2018). Rapid Expansion of a Highly Germline-Expressed MarinerElement Acquired by Horizontal Transfer in the Fire Ant Genome. Genome Biology and Evolution, 10(12), 3262-3278. doi:10.1093/gbe/evy220
    Li, B., & Dewey, C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12(1), 323. doi:10.1186/1471-2105-12-323
    Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760. doi:10.1093/bioinformatics/btp324
    Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., . . . Subgroup, G. P. D. P. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078-2079. doi:10.1093/bioinformatics/btp352
    Li, W., & Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 22(13), 1658-1659. doi:10.1093/bioinformatics/btl158
    Liu, Z., Moore, P. H., Ma, H., Ackerman, C. M., Ragiba, M., Yu, Q., . . . Ming, R. (2004). A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature, 427(6972), 348-352. doi:10.1038/nature02228
    Lu, Y., Yuan, M., Gao, X., Kang, T., Zhan, S., Wan, H., & Li, J. (2013). Identification and Validation of Reference Genes for Gene Expression Analysis Using Quantitative PCR in Spodoptera litura (Lepidoptera: Noctuidae). PLoS ONE, 8(7), e68059-68059. doi:10.1371/journal.pone.0068059
    Lynch, V. J., Nnamani, M. C., Kapusta, A., Brayer, K., Plaza, S. L., Mazur, E. C., . . . Wagner, G. P. (2015). Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy. CellReports, 10(4), 551-561. doi:10.1016/j.celrep.2014.12.052
    Marchler-Bauer, A., Bo, Y., Han, L., He, J., Lanczycki, C. J., Lu, S., . . . Bryant, S. H. (2017). CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Research, 45(D1), D200-D203. doi:10.1093/nar/gkw1129
    Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet journal, 17(1), pp. 10-12. doi:10.14806/ej.17.1.200
    Moran, J. V., DeBerardinis, R. J., & Kazazian, H. H. (1999). Exon shuffling by L1 retrotransposition. Science, 283(5407), 1530-1534. doi:10.1126/science.283.5407.1530
    Munoz-Lopez, M., & Garcia-Perez, J. L. (2010). DNA transposons: nature and applications in genomics. Curr Genomics, 11(2), 115-128. doi:10.2174/138920210790886871
    Nipitwattanaphon, M., Wang, J., Dijkstra, M. B., & Keller, L. (2013). A simple genetic basis for complex social behaviour mediates widespread gene expression differences. Molecular Ecology, 22(14), 3797-3813. doi:10.1111/mec.12346
    Oliveira, S. G., Bao, W., Martins, C., & Jurka, J. (2012). Horizontal transfers of Mariner transposons between mammals and insects. Mobile DNA, 3(1), 14. doi:10.1186/1759-8753-3-14
    Peccoud, J., Loiseau, V., Cordaux, R., & Gilbert, C. (2017). Massive horizontal transfer of transposable elements in insects. Proceedings of the National Academy of Sciences of the United States of America, 114(18), 4721-4726. doi:10.1073/pnas.1621178114
    Peichel, C. L., Ross, J. A., Matson, C. K., Dickson, M., Grimwood, J., Schmutz, J., . . . Kingsley, D. M. (2004). The Master Sex-Determination Locus in Threespine Sticklebacks Is on a Nascent Y Chromosome. Current Biology, 14(16), 1416-1424. doi:10.1016/j.cub.2004.08.030
    Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9), e45.
    Pracana, R., Levantis, I., Martínez-Ruiz, C., Stolle, E., Priyam, A., & Wurm, Y. (2017). Fire ant social chromosomes: Differences in number, sequence and expression of odorant binding proteins. Evolution Letters, 1(4), 199-210. doi:10.1002/evl3.22
    Pracana, R., Priyam, A., Levantis, I., & Nichols, R. A. (2017). The fire ant social chromosome supergene variant Sb shows low diversity but high divergence from SB. Molecular …. doi:10.1111/ijlh.12426
    Qiu, Y., Tittiger, C., Wicker-Thomas, C., Le Goff, G., Young, S., Wajnberg, E., . . . Feyereisen, R. (2012). An insect-specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 109(37), 14858-14863. doi:10.1073/pnas.1208650109
    Riddiford, L. M. (2012). How does juvenile hormone control insect metamorphosis and reproduction? General and Comparative Endocrinology, 179(3), 477-484. doi:10.1016/j.ygcen.2012.06.001
    Rizzon, C., Marais, G., Gouy, M., & Biémont, C. (2002). Recombination Rate and the Distribution of Transposable Elements in the Drosophila melanogaster Genome. Genome research, 12(3), 400-407. doi:10.1101/gr.210802
    Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G., & Mesirov, J. P. (2011). Integrative genomics viewer. Nature Publishing Group, 29(1), 24-26. doi:10.1038/nbt0111-24
    Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2009). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140. doi:10.1093/bioinformatics/btp616
    Ross, K. G. (1997). Multilocus evolution in fire ants: effects of selection, gene flow and recombination. Genetics, 145(4), 961-974.
    Ross, K. G., & Keller, L. (1998). Genetic control of social organization in an ant. Proceedings of the National Academy of Sciences, 95(24), 14232-14237.
    Ross, K. G., Krieger, M. J., Shoemaker, D. D., Vargo, E. L., & Keller, L. (1997). Hierarchical analysis of genetic structure in native fire ant populations: results from three classes of molecular markers. Genetics, 147(2), 643-655.
    Shanklin, J., Whittle, E., & Fox, B. G. (1994). Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry, 33(43), 12787-12794. doi:10.1021/bi00209a009
    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19), 3210-3212. doi:10.1093/bioinformatics/btv351
    Simola, D. F., Graham, R. J., Brady, C. M., Enzmann, B. L., Desplan, C., Ray, A., . . . Berger, S. L. (2015). Epigenetic (re)programming of caste-specific behavior in the ant Camponotus floridanus. Science, 351(6268), aac6633-aac6633. doi:10.1126/science.aac6633
    Singh, R., Lawal, H. M., Schilde, C., Glöckner, G., Barton, G. J., Schaap, P., & Cole, C. (2017). Improved annotation with de novo transcriptome assembly in four social amoeba species. 1-17. doi:10.1186/s12864-017-3505-0
    Skaletsky, H., Kuroda-Kawaguchi, T., Minx, P. J., Cordum, H. S., Hillier, L., Brown, L. G., . . . Page, D. C. (2003). The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature, 423(6942), 825-837. doi:10.1038/nature01722
    Stolle, E., Pracana, R., Howard, P., & biology, C. P. M. (2018). Degenerative expansion of a young supergene. academic.oup.com. doi:10.1093/molbev/msy236
    Sultana, T., Zamborlini, A., Cristofari, G., & Lesage, P. (2017). Integration site selection by retroviruses and transposable elements in eukaryotes. Nature Reviews Genetics, 18(5), 292-308. doi:10.1038/nrg.2017.7
    Sun, M., Lu, M.-X., Tang, X.-T., & Du, Y.-Z. (2015). Exploring Valid Reference Genes for Quantitative Real-Time PCR Analysis in Sesamia inferens (Lepidoptera: Noctuidae). PLoS ONE, 10(1), e0115979-0115916. doi:10.1371/journal.pone.0115979
    Sutherland, T. D., Weisman, S., Trueman, H. E., Sriskantha, A., Trueman, J. W. H., & Haritos, V. S. (2007). Conservation of Essential Design Features in Coiled Coil Silks. Molecular Biology and Evolution, 24(11), 2424-2432. doi:10.1093/molbev/msm171
    Suzek, B. E., Wang, Y., Huang, H., McGarvey, P. B., Wu, C. H., & Consortium, t. U. (2015). UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics, 31(6), 926-932. doi:10.1093/bioinformatics/btu739
    Tang, H., Zhang, X., Miao, C., Zhang, J., Ming, R., Schnable, J. C., . . . Lu, J. (2015). ALLMAPS: robust scaffold ordering based on multiple maps. Genome Biology, 16(1), 3. doi:10.1186/s13059-014-0573-1
    Theissinger, K., Falckenhayn, C., Blande, D., Toljamo, A., Gutekunst, J., Makkonen, J., . . . Kokko, H. (2016). De Novo assembly and annotation of the freshwater crayfish Astacus astacus transcriptome. Marine Genomics, 28(C), 7-10. doi:10.1016/j.margen.2016.02.006
    Trible, W., & Ross, K. G. (2015). Chemical communication of queen supergene status in an ant. Journal of Evolutionary Biology, 29(3), 502-513. doi:10.1111/jeb.12799
    Tschinkel, W. R. (2006). The Fire Ants: Harvard University Press.
    Ubersax, J. A., & Ferrell Jr, J. E. (2007). Mechanisms of specificity in protein phosphorylation. Nature Reviews Molecular Cell Biology, 8(7), 530-541. doi:10.1038/nrm2203
    Verkaar, E. L. C., Zijlstra, C., van 't Veld, E. M., Boutaga, K., van Boxtel, D. C. J., & Lenstra, J. A. (2004). Organization and concerted evolution of the ampliconic Y-chromosomal TSPY genes from cattle. Genomics, 84(3), 468-474. doi:10.1016/j.ygeno.2004.05.001
    Vicoso, B., Emerson, J. J., Zektser, Y., Mahajan, S., & Bachtrog, D. (2013). Comparative Sex Chromosome Genomics in Snakes: Differentiation, Evolutionary Strata, and Lack of Global Dosage Compensation. PLoS Biology, 11(8), e1001643-1001615. doi:10.1371/journal.pbio.1001643
    Wang, J., Jemielity, S., Uva, P., Wurm, Y., Gräff, J., & Keller, L. (2006). An annotated cDNA library and microarray for large-scale gene-expression studies in the ant Solenopsis invicta. Genome Biology, 8(1), R9-R9. doi:10.1186/gb-2007-8-1-r9
    Wang, J., Ross, K. G., & Keller, L. (2008). Genome-Wide Expression Patterns and the Genetic Architecture of a Fundamental Social Trait. PLoS Genetics, 4(7), e1000127-1000129. doi:10.1371/journal.pgen.1000127
    Wang, J., Wurm, Y., Nipitwattanaphon, M., Riba-Grognuz, O., Huang, Y.-C., Shoemaker, D., & Keller, L. (2013). A Y-like social chromosome causes alternative colony organization in fire ants Nature, 493(7434), 664-668. doi:10.1038/nature11832
    Wheeler, D. (1986). Developmental and physiological determinants of caste in social hymenoptera: evolutionary implications. The American Naturalist, 1-22.
    Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J. L., Capy, P., Chalhoub, B., . . . Schulman, A. H. (2007). A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics, 8(12), 973-982. doi:10.1038/nrg2165
    Wilkerson, A. J. P., Raudsepp, T., Graves, T., Albracht, D., Warren, W., Chowdhary, B. P., . . . Murphy, W. J. (2017). Gene discovery and comparative analysis of X-degenerate genes from the domestic cat Y chromosome. Genomics, 1-10. doi:10.1016/j.ygeno.2008.06.012
    Wurm, Y., Wang, J., Riba-Grognuz, O., Corona, M., Nygaard, S., Hunt, B. G., . . . Keller, L. (2011). The genome of the fire ant Solenopsis invicta. Proceedings of the National Academy of Sciences of the United States of America, 108(14), 5679-5684. doi:10.1073/pnas.1009690108
    Xie, C., & Tammi, M. T. (2009). CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics, 10(1), 80. doi:10.1186/1471-2105-10-80
    Xu, Y.-L., He, P., Zhang, L., Fang, S.-Q., Dong, S.-L., Zhang, Y.-J., & Li, F. (2009). Large-scale identification of odorant-binding proteins and chemosensory proteins from expressed sequence tags in insects. BMC Genomics, 10(1), 632-613. doi:10.1186/1471-2164-10-632
    Yang, C. C., Shoemaker, D. D., Wu, W. J., & Shih, C. J. (2007). Population genetic structure of the red imported fire ant, Solenopsis invicta, in Taiwan. Insectes Sociaux, 55(1), 54-65. doi:10.1007/s00040-007-0969-y
    Yoshida, K., Makino, T., & Kitano, J. (2016). Accumulation of Deleterious Mutations on the Neo-Y Chromosome of Japan Sea Stickleback ( Gasterosteus nipponicus). Journal of Heredity, 108(1), 63-68. doi:10.1093/jhered/esw054
    Zhang, P., & Spradling, A. C. (1993). Efficient and Dispersed Local P-Element Transposition from Drosophila Females. Genetics, 133(2), 361-373. Retrieved from <Go to ISI>://WOS:A1993KH69300022
    Zhang, Y.-L., & Li, Z.-X. (2008). Two different farnesyl diphosphate synthase genes exist in the genome of the green peach aphid, Myzus persicae. Genome …, 51(7), 501-510. doi:10.1139/G08-037

    下載圖示
    QR CODE