簡易檢索 / 詳目顯示

研究生: 何佩勵
Ho, Pei-Li
論文名稱: 探討薛普利超星系團中環境對星系活動的影響
Environmental Effects on Galaxy Activities in the Shapley supercluster
指導教授: 陳林文
Chen, Lin-Wen
學位類別: 博士
Doctor
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 150
中文關鍵詞: 超星系團4000Å轉折強度恆星形成星系團合併
英文關鍵詞: supercluster, 4000Å break strength, star formation, cluster merger
論文種類: 學術論文
相關次數: 點閱:293下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇研究中,我們利用許多不同波段的巡天資料和從NASA河外資料庫(NED)收集的星系紅移資料,來探討在薛普利超星系團中,星系的恆星形成及星系核心的活動是如何受到來自星系團合併、星系團質量、星系團內介質(ICM)及星系密度等環境因素和星系本身恆星質量的影響。這些巡天資料目錄包括2微米巡天(2MASS),6度視野星系巡天(6dFGS),國家電波天文台甚大天線陣巡天(NVSS),倫琴衛星巡天(RASS)和倫琴衛星-歐南天文台X射線星系團目錄(REFLEX)。
    藉著利用星系光譜的4000Å轉折強度(4000Å break strength,D4000)做為星系恆星形成歷史的指標,並代表星系中恆星的平均年齡。我們在4000Å轉折強度與星系密度的關係中,我們發現星系中恆星的平均年齡與周圍星系的密度以及星系本身的恆星質量大小都有很強的相關性。特別是當星系密度的計算是以1 Mpc的尺度為半徑所得到的密度值,其相關性最好。
    為了探討星系團的環境對於其成員星系在4000Å轉折強度和該星系至星系團核心距離的關係(D4000-radius)上的影響,我們將69個在薛普利超星系團中的星系團和星系群依其維里質量(virial mass,以M200表示)高低 、X射線的強度、以及是否顯示星系團合併的特徵等特性各分成2個族群,並且將距離星系團核心5倍維里半徑(virial radius,以r200表示)內的星系依其在K波段的絕對星等高低(代表星系的恆星質量)分成4個範圍,結果顯示:(1)對所有不同特性的星系團族群,其4000Å轉折強度隨星系至星系團核心距離的變化,都與成員星系的恆星質量有關。(2)對分別在4個星系恆星質量範圍的星系來說,在較高質量及X射線強度的星系團中的星系,其平均星系年齡都比在較低質量、X射線的星系團中的星系老。(3)對於位於合併中的星系團5倍維里半徑內的低質量星系,其平均年齡都較在非合併中的星系團中的低質量星系年輕。(4)對依星系團特性而區分的2個星系團族群來說,兩者間的差異以低質量星系最明顯,這表示低質量、氣體豐度高的星系對環境的影響最敏感。
    另外,我們也利用由電波源所辨識的恆星形成星系(star-forming galaxy,SFG)及吸收線活躍星系核(absorption-line AGN,AA)來了解環境對星系活動的影響。結果顯示,星系中恆星形成星系的比率隨著環境星系密度的增加而快速降低;反之,吸收線活躍星系核的比率隨著星系密度的增加而增加。另外,我們也發現,在合併中且其速度瀰散度(velocity dispersion)大於500公里/秒的星系團外圍,距離星系團核心1-2倍半徑的地方,恆星形成星系的比率特別高。這可能是因為當星系從絲狀結構落入星系團的時候,因星系密度增加且星系彼此間的相對速度低,使得星系間因互相作用而觸發恆星的形成。
    最後,我們利用Abell S0721這個在薛普利超星系團中,擁有最高比率吸收線活躍星系核、並且是正在合併中的星系團,來研究其動力狀態與成員星系活動的關係。由於吸收線活躍星系核的電波發射來源被認為與星系本身或周圍的星系團熱氣體之熱動力狀態有關,我們因此推測,在這個星系團中,吸收線活躍星系核所在的次結構應該是在較穩定的狀態。因此我們可以利用運動方程式的解(equations of motion)來推測目前S0721可能的合併狀態。

    We use several survey catalogues in different wavelengths, including the Two Micro All Sky Survey (2MASS), Six-degree Field Galaxy Survey (6dFGS), NRAO VLA Sky Survey (NVSS), ROSAT All Sky Survey (RASS), ROSAT-ESO Flux Limited X-ray (REFLEX) cluster catalogue, and galaxy velocity data from the the NASA Extragalactic Database (NED), to study how galaxy star formation and nuclear activity depend on the environmental effects from cluster/group mergers, halo mass, the intracluster medium (ICM) and local galaxy density as well as on galaxy stellar mass (indicated by the $K$-band absolute magnitude $M_\rm{k}$) in the Shapley supercluster (SSC).

    By using the 4000 {\AA} break strength (D4000) as an indicator of star formation history, the relation between the D4000 and local galaxy density (D4000--density) shows that the D4000 is strongly dependent on the local galaxy density as well as the on galaxy stellar mass. The D4000--density correlation is strongest for density estimated on scale of 1 Mpc for all $M_\rm{k}$ ranges. As to the cluster/group environmental effects on the relations of D4000 and clustercentric distance (D4000--radius) for galaxies within 5 $r_{200}$, it is analyzed by dividing the 69 clusters/groups in the SSC into two populations based on the difference in $M_{200}$, X-ray flux, and merger features, respectively, as well as by dividing the selected galaxies into 4 subclasses based on their $M_\rm{k}$. Our results show that:
    (1) The D4000--radius relation depend strongly on galaxy stellar mass for all cluster/group populations. (2) For more massive, X-ray detected clusters, the mean strength of 4000 {\AA} break is mostly stronger than the less massive, under X-ray detection ones, even out to 3--5 $r_{200}$ for all $M_\rm{k}$ ranges. (3) In merging clusters, the faint low-mass galaxies are younger (lower D4000) than those in non-merging systems from cluster center out to 3--5 $r_{200}$, and the enhanced star formation activity is possibly triggered by merging events. (4) The difference in the D4000--radius relations between the two divided populations shown in this study is most pronounced for low-mass galaxies, this means that low-mass, gas-rich galaxies are most sensitive to their environments.

    The environmental effects on galaxy activities are also analyzed by the fractions of radio-selected star-forming galaxies (SFG) and absorption-line AGN (AA). Our results show that the fraction of SFG drops quickly towards high galaxy density regions, whereas the fraction of AA increases towards denser regions. The cluster/group environmental effects on the $f_\rm{SFG}$--radius relation show that there is an obvious enhanced fraction within 1--2 $r_{200}$. A possible scenario for this enhancement may be owing to the increasing galaxy-galaxy interactions when galaxies are infalling into clusters. The outskirt regions for this enhancement are mostly related to on-going cluster mergers with $\sigma_v \geq$ 500 km s$^{-1}$.

    Finally, we investigate the possible connection between cluster dynamical state and the properties of its member galaxies for one cluster merger Abell S0721. In this cluster, it shows strong evidence of three substructures, and owns the highest fraction of radio-emitting galaxies among the clusters in the SSC. A total of three AA and two SFG are identified. For each AA, it is also the brightest galaxy in each substructure core. Assuming the gas supply of AA is frequently associated with the thermodynamic states of galactic coronae or host groups and clusters, therefore, the possible scenario from solutions of the equations of motion for this cluster is that the substructure at the north-east is either unbound or is collapsing at a current separation of
    $\sim$1.4 Mpc, and the two clumps in the main structure are possibly turning to collapse after the maximum expansion.

    1 Introduction . . . . . . . . . . . . . . .1 1.1 Effects of Cluster Mergers on Member Galaxies . . . . . . . . . . . . . . . 1 1.2 Cluster Environmental Effects on Galaxy Activities . . . . . . . . . . . . . 2 1.3 Galaxy Star Formation Activity in Outskirts of Clusters . . . . . . . . . . . 3 1.4 The Motivation of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5 The Shapley Supercluster . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.6 Outline of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Data . . . . . . . . . . . . . . .7 2.1 Data Catalogues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 Two Micro All Sky Survey . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 Six-degree Field Galaxy Survey . . . . . . . . . . . . . . . . . . . 8 2.1.3 NRAO VLA Sky Survey . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.4 ROSAT All Sky Survey and ROSAT-ESO Flux Limited X-ray (REFLEX) Cluster Catalogue . . . . . . . . . . . . . . . . . . . . . . 9 2.1.5 Velocity data from the NASA Extragalactic Database . . . . . . . . 10 2.2 Galaxy Velocity Catalogue, Completeness and Galaxy Distribution . . . . . 11 2.2.1 Velocity catalogue . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Data completeness . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.3 Galaxy distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 Properties of Galaxy Clusters and Groups in the SSC . . . . . . . . . . . . . . .21 3.1 Compilation and Identification of Galaxy Clusters and Groups . . . . . . . 21 3.1.1 Galaxy clusters and groups compiled from the NED . . . . . . . . 21 3.1.2 X-ray detected galaxy clusters and groups . . . . . . . . . . . . . . 22 3.1.3 Detection of unidentified galaxy groups . . . . . . . . . . . . . . . 22 3.1.4 Determination of velocity dispersion sv, r200, M200, and cluster members . . . . . . . . . . 24 3.2 Dynamic States of Galaxy Clusters and Groups . . . . . . . . . . . . . . . 26 3.2.1 DS-test probability of galaxy clusters and groups . . . . . . . . . . 26 3.2.2 Ellipticities of galaxy clusters and groups . . . . . . . . . . . . . . 27 3.3 Summary of Properties of Galaxy Clusters and Groups in the SSC . . . . . 29 3.4 Alignment of Galaxy Clusters in the SSC . . . . . . . . . . . . . . . . . . 37 3.4.1 Identification of galaxy clusters/groups and calculation of ellipticities 38 3.4.2 Alignment of clusters/groups in the SSC . . . . . . . . . . . . . . . 38 3.4.3 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . 44 3.4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4 Environmental Effects on Galaxy Star Formation History. . . . . . . . . . . . . . . 47 4.1 Introduction of the 4000 A Break Strength . . . . . . . . . . . . . . . . . . 47 4.2 The 4000 A Break Strength in the SSC . . . . . . . . . . . . . . . . . . . 49 4.2.1 The relation between D4000 and Mk . . . . . . . . . . . . . . . . . 49 4.2.2 Spatial distribution of D4000 in the SSC . . . . . . . . . . . . . . . 52 4.2.3 Relation between D4000 and the local galaxy number density . . . 52 4.3 Relation of D4000 and Clustercentric Distance . . . . . . . . . . . . . . . 55 4.3.1 Dependence of D4000 on M200 of host clusters/groups . . . . . . . 58 4.3.2 Dependence of X-ray detection of host clusters/groups . . . . . . . 63 4.3.3 Difference of D4000 for clusters/groups with similar M200 or velocity dispersion but different in X-ray detection . . . . . . . . . . . . 64 4.3.4 Dependence of merging features of host clusters/groups . . . . . . 65 4.3.5 Summary of the D4000–radius relations . . . . . . . . . . . . . . . 70 5 Environmental Effects on Properties of Radio-Emitting Galaxies . . . . . . . . . . . . . . .75 5.1 Identification of Radio-Emitting Galaxy . . . . . . . . . . . . . . . . . . . 75 5.1.1 Cross-matching of galaxy sample with NVSS . . . . . . . . . . . . 75 5.1.2 Classification of radio-emitting galaxies . . . . . . . . . . . . . . . 76 5.1.3 Properties of radio-emitting galaxies . . . . . . . . . . . . . . . . . 80 5.2 Relations between Galaxy Number Density and Fractions of radio-emitting Galaxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.3 Relations between Local Galaxy Number Density and Properties of Radio- emitting Galaxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.3.1 Dependence of star formation rate, specific star formation rate of SFG on local galaxy number density . . . . . . . . . . . . . . . . . 88 5.3.2 Dependence of radio luminosity at 1.4 GHz of absorption-line AGN on local galaxy number density . . . . . . . . . . . . . . . . . . . 88 5.4 Relation of Radio-Emitting Galaxy Fraction and Clustercentric Distance . . 89 5.4.1 Relation of star-forming galaxy fraction and clustercentric distance 89 5.4.2 Comparison of the relations of D4000–radius and fSFG–radius . . . 92 5.4.3 Comparison of the relations of D4000–radius and fSFG–radius for cluster mergers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.4.4 Relation of absorption-line AGN fraction and clustercentric distance 99 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6 A Multi-wavelength Study of the Merger Candidate Abell S0721 and the Activities of Its Member Galaxies . . . . . . . . . . . . . . .105 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.3 Data Analysis and Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.3.1 Spatial and hardness ratio analysis of X-ray data . . . . . . . . . . 108 6.3.2 Galaxy dynamic and spatial distribution analysis . . . . . . . . . . 109 6.3.3 Identification of radio galaxies in S0721 . . . . . . . . . . . . . . . 111 6.4 Discussioin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.4.1 The properties of X-ray emission . . . . . . . . . . . . . . . . . . 114 6.4.2 Mass estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.4.3 Dynamical model . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.4.4 Comparison of radio galaxy properties with other mergers in the SSC 120 6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 7 Summary . . . . . . . . . . . . . . .127 Bibliography. . . . . . . . . . . . . . . 129 Appendix Images of Galaxy Clusters and Groups in the SSC . . . . . . . . . . . . . . .137

    Bibliography
    Aarseth, S. J., & Fall, S. M. 1980, ApJ, 236, 43
    Abell, G. O., Corwin, Jr., H. G., & Olowin, R. P. 1989, ApJS, 70, 1
    Bahcall, J. N., Kirhakos, S., Saxe, D. H., & Schneider, D. P. 1997, ApJ, 479, 642
    Bahe, Y. M., McCarthy, I. G., Balogh, M. L., & Font, A. S. 2013, MNRAS, 804
    Balogh, M., Eke, V., Miller, C., et al. 2004, MNRAS, 348, 1355
    Balogh, M. L., Morris, S. L., Yee, H. K. C., Carlberg, R. G., & Ellingson, E. 1999, ApJ, 527, 54
    Balogh, M. L., Navarro, J. F., & Morris, S. L. 2000, ApJ, 540, 113
    Balogh, M. L., Schade, D., Morris, S. L., et al. 1998, ApJ, 504, L75
    Bardelli, S., Zucca, E., & Baldi, A. 2001, MNRAS, 320, 387
    Bardelli, S., Zucca, E., Vettolani, G., et al. 1994, MNRAS, 267, 665
    Bardelli, S., Zucca, E., Zamorani, G., Moscardini, L., & Scaramella, R. 2000, MN-RAS, 312, 540
    Bardelli, S., Zucca, E., Zamorani, G., Vettolani, G., & Scaramella, R. 1998, MNRAS, 296, 599
    Barnes, J. 1985, MNRAS, 215, 517
    Basilakos, S., Plionis, M., & Maddox, S. J. 2000, MNRAS, 316, 779

    Beers, T. C., Flynn, K., & Gebhardt, K. 1990, AJ, 100, 32
    Beers, T. C., Geller, M. J., & Huchra, J. P. 1982, ApJ, 257, 23
    Bekki, K. 2009, MNRAS, 399, 2221 Bekki, K., & Couch, W. J. 2003, ApJ, 596, L13
    Bekki, K., Couch, W. J., & Shioya, Y. 2002, ApJ, 577, 651
    Bekki, K., Owers, M. S., & Couch, W. J. 2010, ApJ, 718, L27
    Bell, E. F. 2003, ApJ, 586, 794
    Bell, E. F., & de Jong, R. S. 2001, ApJ, 550, 212
    Bell, E. F., McIntosh, D. H., Katz, N., & Weinberg, M. D. 2003, ApJS, 149, 289
    Best, P. N., & Heckman, T. M. 2012, MNRAS, 421, 1569
    Best, P. N., von der Linden, A., Kauffmann, G., Heckman, T. M., & Kaiser, C. R. 2007, MNRAS, 379, 894
    Binggeli, B. 1982, A&A, 107, 338 Blundell, K. M., & Rawlings, S. 2000, AJ, 119, 1111
    Bohringer, H., Dolag, K., & Chon, G. 2012, A&A, 539, A120
    Bohringer, H., Schuecker, P., Guzzo, L., et al. 2004, A&A, 425, 367
    Braglia, F. G., Pierini, D., Biviano, A., & Bohringer, H. 2009, A&A, 500, 947
    Bruzual A., G. 1983, ApJ, 273, 105
    Cavagnolo, K. W., Donahue, M., Voit, G. M., & Sun, M. 2009, ApJS, 182, 12
    Chambers, S. W., Melott, A. L., & Miller, C. J. 2002, ApJ, 565, 849
    Chung, S. M., Eisenhardt, P. R., Gonzalez, A. H., et al. 2011, ApJ, 743, 34
    Condon, J. J. 1992, ARA&A, 30, 575
    Condon, J. J., Cotton, W. D., Greisen, E. W., et al. 1998, AJ, 115, 1693
    Couch, W. J., Balogh, M. L., Bower, R. G., et al. 2001, ApJ, 549, 820
    de Filippis, E., Schindler, S., & Erben, T. 2005, A&A, 444, 387
    de Plaa, J., Werner, N., Bleeker, J. A. M., et al. 2007, A&A, 465, 345
    Dickey, J. M., & Lockman, F. J. 1990, ARA&A, 28, 215
    Donnelly, R. H., Forman, W., Jones, C., et al. 2001, ApJ, 562, 254
    Dressler, A., & Shectman, S. A. 1987, AJ, 94, 899 —. 1988, AJ, 95, 985
    Drinkwater, M. J., Proust, D., Parker, Q. A., Quintana, H., & Slezak, E. 1999, PASA, 16, 113
    Dwarakanath, K. S., & Owen, F. N. 1999, AJ, 118, 625
    Emonts, B. H. C., Morganti, R., Tadhunter, C. N., et al. 2006, A&A, 454, 125
    Fadda, D., Biviano, A., Marleau, F. R., Storrie-Lombardi, L. J., & Durret, F. 2008, ApJ, 672, L9
    Farouki, R., & Shapiro, S. L. 1980, ApJ, 241, 928
    Ferrari, C., Benoist, C., Maurogordato, S., Cappi, A., & Slezak, E. 2005, A&A, 430, 19
    Finn, R. A., Zaritsky, D., McCarthy, Jr., D. W., et al. 2005, ApJ, 630, 206
    Finoguenov, A., Henriksen, M. J., Briel, U. G., de Plaa, J., & Kaastra, J. S. 2004, ApJ, 611, 811
    Finoguenov, A., Reiprich, T. H., & Bohringer, H. 2001, A&A, 368, 749
    Fujita, Y., Takizawa, M., Nagashima, M., & Enoki, M. 1999, PASJ, 51, L1
    Fukazawa, Y., Makishima, K., & Ohashi, T. 2004, PASJ, 56, 965
    Gastaldello, F., Ettori, S., Molendi, S., et al. 2003, A&A, 411, 21
    Gill, S. P. D., Knebe, A., & Gibson, B. K. 2005, MNRAS, 356, 1327
    Gnedin, O. Y. 2003, ApJ, 582, 141
    Gorgas, J., Cardiel, N., Pedraz, S., & Gonzalez, J. J. 1999, A&AS, 139, 29
    Gunn, J. E., & Gott, III, J. R. 1972, ApJ, 176, 1
    Haines, C. P., Busarello, G., Merluzzi, P., et al. 2011, MNRAS, 412, 145
    Hambly, N. C., MacGillivray, H. T., Read, M. A., et al. 2001, MNRAS, 326, 1279
    Hardcastle, M. J., Evans, D. A., & Croston, J. H. 2007, MNRAS, 376, 1849
    Ho, P.-L., & Chen, L.-W. 2008, Advances in Space Research, 42, 550
    Ho, P.-L., Chen, L.-W., Leon, S., Guibert, J., & Yan, C.-H. 2004, Journal of Taipei Astronomical Museum, 2, 1
    Hwang, H. S., & Lee, M. G. 2009, MNRAS, 397, 2111
    Jarrett, T. H., Chester, T., Cutri, R., et al. 2000, AJ, 119, 2498
    Jones, D. H., Saunders, W., Colless, M., et al. 2004, MNRAS, 355, 747
    Jones, D. H., Read, M. A., Saunders, W., et al. 2009, MNRAS, 399, 683
    Kaiser, N. 1986, MNRAS, 222, 323
    Kaldare, R., Colless, M., Raychaudhury, S., & Peterson, B. A. 2003, MNRAS, 339, 652
    Kauffmann, G., White, S. D. M., Heckman, T. M., et al. 2004, MNRAS, 353, 713
    Kauffmann, G., Heckman, T. M., White, S. D. M., et al. 2003a, MNRAS, 341, 33
    —. 2003b, MNRAS, 341, 54

    Kawata, D., & Mulchaey, J. S. 2008, ApJ, 672, L103

    Kennicutt, Jr., R. C., Roettiger, K. A., Keel, W. C., van der Hulst, J. M., & Hummel,
    E. 1987, AJ, 93, 1011
    Kull, A., & Bohringer, H. 1999, A&A, 341, 23
    Larson, R. B., Tinsley, B. M., & Caldwell, C. N. 1980, ApJ, 237, 692
    Lauberts, A., & Valentijn, E. A. 1989, The Messenger, 56, 31
    Lee, J. C., Hwang, H. S., Lee, M. G., Kim, M., & Kim, S. C. 2011, MNRAS, 414, 702
    Lopes, P. A. A., de Carvalho, R. R., Kohl-Moreira, J. L., & Jones, C. 2009, MNRAS, 392, 135
    Ma, C.-J., Ebeling, H., Marshall, P., & Schrabback, T. 2010, MNRAS, 406, 121
    Mahajan, S., Raychaudhury, S., & Pimbblet, K. A. 2012, MNRAS, 427, 1252
    Marcillac, D., Rigby, J. R., Rieke, G. H., & Kelly, D. M. 2007, ApJ, 654, 825
    Markevitch, M. 1998, ApJ, 504, 27 Mauch, T., & Sadler, E. M. 2007, MNRAS, 375, 931
    Mauduit, J.-C., & Mamon, G. A. 2007, A&A, 475, 169
    McIntosh, D. H., Bell, E. F., Weinberg, M. D., & Katz, N. 2006, MNRAS, 373, 1321
    Mihos, J. C., & Hernquist, L. 1996, ApJ, 464, 641
    Miller, N. A. 2005, AJ, 130, 2541
    Miller, N. A., & Owen, F. N. 2001, ApJS, 134, 355
    —. 2003, AJ, 125, 2427
    Moore, B., Katz, N., Lake, G., Dressler, A., & Oemler, A. 1996, Nature, 379, 613

    Moore, B., Lake, G., & Katz, N. 1998, ApJ, 495, 139
    Munoz, J. A., & Loeb, A. 2008, MNRAS, 391, 1341
    Mulchaey, J. S. 2000, ARA&A, 38, 289
    Mulchaey, J. S., Davis, D. S., Mushotzky, R. F., & Burstein, D. 2003, ApJS, 145, 39
    Mulchaey, J. S., & Zabludoff, A. I. 1999, ApJ, 514, 133
    Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493
    Pinkney, J., Roettiger, K., Burns, J. O., & Bird, C. M. 1996, ApJS, 104, 1
    Plionis, M. 1994, ApJS, 95, 401
    Plionis, M., & Basilakos, S. 2002, MNRAS, 329, L47
    Poggianti, B. M., & Barbaro, G. 1997, A&A, 325, 1025
    Poggianti, B. M., Smail, I., Dressler, A., et al. 1999, ApJ, 518, 576
    Ponman, T. J., & Bertram, D. 1993, Nature, 363, 51
    Popesso, P., Biviano, A., Bohringer, H., & Romaniello, M. 2007, A&A, 461, 397
    Porter, S. C., Raychaudhury, S., Pimbblet, K. A., & Drinkwater, M. J. 2008, MNRAS, 388, 1152
    Proust, D., Quintana, H., Carrasco, E. R., et al. 2006, A&A, 447, 133
    Quintana, H., Carrasco, E. R., & Reisenegger, A. 2000, AJ, 120, 511
    Quintana, H., Melnick, J., Proust, D., & Infante, L. 1997, A&AS, 125, 247
    Ragone, C. J., Muriel, H., Proust, D., Reisenegger, A., & Quintana, H. 2006, A&A, 445, 819
    Rasmussen, J., Mulchaey, J. S., Bai, L., et al. 2012, ApJ, 757, 122
    Reisenegger, A., Quintana, H., Carrasco, E. R., & Maze, J. 2000, AJ, 120, 523
    Roettiger, K., Burns, J. O., & Loken, C. 1996, ApJ, 473, 651
    Rossetti, M., & Molendi, S. 2010, A&A, 510, A83
    Sadler, E. M., Jackson, C. A., Cannon, R. D., et al. 2002, MNRAS, 329, 227
    Sanders, D. B., & Mirabel, I. F. 1996, ARA&A, 34, 749
    Shabala, S. S., Ash, S., Alexander, P., & Riley, J. M. 2008, MNRAS, 388, 625
    Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163
    Stein, P. 1996, A&AS, 116, 203
    Sun, M. 2009, ApJ, 704, 1586
    Venturi, T., Bardelli, S., Dallacasa, D., et al. 2003, A&A, 402, 913
    Venturi, T., Bardelli, S., Morganti, R., & Hunstead, R. W. 2000, MNRAS, 314, 594
    Venturi, T., Bardelli, S., Zagaria, M., Prandoni, I., & Morganti, R. 2002, A&A, 385, 39
    Venturi, T., Bardelli, S., Zambelli, G., Morganti, R., & Hunstead, R. W. 2001, MNRAS, 324, 1131
    Vikhlinin, A., Burenin, R. A., Ebeling, H., et al. 2009, ApJ, 692, 1033
    Voges, W., Aschenbach, B., Boller, T., et al. 1999, A&A, 349, 389
    von der Linden, A., Wild, V., Kauffmann, G., White, S. D. M., & Weinmann, S. 2010, MNRAS, 404, 1231
    West, M. J. 1989, ApJ, 347, 610
    Zabludoff, A. I., & Mulchaey, J. S. 1998, ApJ, 496, 39
    Zimmermann, H.-U., Boller, T., Dobereiner, S., & Pietsch, W. 2001, A&A, 378, 30
    Zucca, E., Zamorani, G., Scaramella, R., & Vettolani, G. 1993, ApJ, 407, 470

    下載圖示
    QR CODE