研究生: |
陳謙 Chen, Chien |
---|---|
論文名稱: |
利用單分子螢光共振能量轉移技術探討RRM1具序列特異性的解旋能力 Sequence-specific unwinding activities of RRM1 revealed by single-molecule FRET spectroscopy |
指導教授: |
李以仁
Lee, I-Ren |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 單分子螢光共振能量轉移 、TDP-43 、DNA 結合力 、解旋力 、dTG 重複序列 |
英文關鍵詞: | single-molecule fluorescence resonance energy transfer(smFRET), TDP-43, DNA binding, double-strand unwinding, dTG repeat sequence |
DOI URL: | http://doi.org/10.6345/NTNU201900237 |
論文種類: | 學術論文 |
相關次數: | 點閱:136 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
TAR 結合蛋白43 (TDP-43) 在真核生物細胞中的轉錄和轉譯過程中起著遺傳調控中有著重要的作用。非正常功能的 TDP-43 在人體內會形成類沉澱蛋白,此有毒物質生成漸凍人症 (amyotrophic lateral sclerosis, ALS) 以及腦前側顳額硬化症 (Frontotemporal lobar degeneration, FTLD)。過去研究發現,TDP-43 可作為一種 RNA/DNA 的結合蛋白 (binding protein),其特定去結合 UG 的重複序列,尤其是位在靠近 3’ 端的囊性纖維化跨膜傳導調節因子 (Cystic fibrosis transmembrane conductance regulator, CFTR) 基因的第九段外顯子 (exon 9) 交接處;同時,TDP-43 具有 RNA 護伴蛋白 (chaperone) 的特性,能夠將雙股螺旋的 RNA 進行解旋 (unwinding)。TDP-43 的結構主要由 RRM1 (RNA recognition motifs)、RRM2、N-末端 (N-terminal domain, NTD) 以及富含甘胺酸 (glycine) 的 C-末端。其中,多項研究指出 RRM1 對於特定 DNA/RNA 序列有較高的結合能力。在此,我們利用單分子螢光共振能量轉移 (single-molecule fluorescence resonance energy transfer, smFRET) 技術來探討 RRM1 解旋 (unwinding) 雙股螺旋 DNA 的能力。實驗結果顯示 RRM1 將雙股螺旋的 TG:CA 重複序列解旋後,會持續停留在原 DNA 試樣上,藉由動力學分析得知解旋的速率決定步驟對 RRM1 的濃度為二級反應,顯示解旋需要兩個 RRM1 同時作用。當我們將 TG 重複序列增長時,RRM1 對 TG 雙股螺旋解旋的出現兩種相互競爭的反應路徑:分別為逐步 (stepwise) 以及直接 (direct) 路徑,且受 RRM1 濃度所調控。而當我們將序列接上非 TG 重複序列時,則沒有觀察到明顯的解旋現象,因此可推斷 RRM1 對序列具有選擇性。
TAR binding protein 43 (TDP-43) plays an important role in genetic regulation during transcription and translation in eukaryotes cells. Malfunction of TDP-43 causes amyotrophic lateral sclerosis (ALS) and Frontotemporal lobar degeneration (FTLD). TDP-43 is primarily an RNA/DNA binding protein with preferential binding to tandem UG sequences located specifically on the 3’- CFTR exon 9. Meanwhile, TDP-43 also possesses RNA-chaperone activity and the ability to unwind double-strand RNA. TDP-43 consists of RRM1, RRM2, and N-/C-terminal domains. Among them, RRM1 shows significantly higher affinity to TG/UG repeats. Here, we utilized single-molecule fluorescence resonance energy transfer (smFRET) spectroscopy to investigate the unwinding activities of RRM1. We observed that RRM1 unwinds double-stranded TG:CA hexa-repeat and stalls on the assay. The observed pseudo-second-order unwinding kinetics suggest a dimeric rate-determining step during the RRM1 unwinding. When a longer TG repeat sequence was used, two competing pathways, stepwise and direct unwinding, were observed with RRM1 concentration dependence. With the repeat sequence connected to non-TG repeat sequences, no unwinding activity was observed, suggesting a strong sequence-specific unwinding ability of RRM1.
[1] Fang, Y. S., Tsai, K. J., Chang, Y. J., Kao, P., Woods R., Kuo, P. H., et al. Full-length TDP-43 forms toxic amyloid oligomers that are present in frontotemporal lobar dementia-TDP patients. Nat Commun. 2014;5:4824.
[2] Amyotrophic Lateral Sclerosis (ALS) Fact Sheet | National Institute of Neurological Disorders and Stroke n.d. https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Amyotrophic-Lateral-Sclerosis-ALS-Fact-Sheet
[3] Brain Cells for Socializing. Smithsonian n.d. https://www.smithsonianmag.com/science-nature/brain-cells-for-socializing-133855450/
[4] Snowden J. S., Neary D., Mann D. M. A. Frontotemporal dementia. Br J Psychiatry J Ment Sci. 2002;180:140–3.
[5] Vanden B. L., Naval-Sánchez M., Adachi Y., Diaper D., Dourlen P., Chapuis J., et al. TDP-43 Loss-of-Function Causes Neuronal Loss Due to Defective Steroid Receptor-Mediated Gene Program Switching in Drosophila. Cell Rep. 2013;3:160–72.
[6] Neuroimaging in Dementia n.d. http://ver01.lidsen.com/journals/geriatrics/geriatrics-02-03-011
[7] Wang, I. F., Wu, L. S., Shen, C. K. J. TDP-43: an emerging new player in neurodegenerative diseases. Trends Mol Med. 2008;14:479–85.
[8] Qin, H., Lim, L., Wei, Y. et al. Resolving the paradox for protein aggregation diseases: NMR structure and dynamics of the membrane-embedded P56S-MSP causing ALS imply a common mechanism for aggregation-prone proteins to attack membranes. F1000Research. 2014, 2:221
[9] Ou, S. H., Wu, F., Harrich, D., García-Martínez L. F., Gaynor R. B. Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J Virol. 1995;69:3584–96.
[10] Buratti E., Dörk T., Zuccato E., Pagani F., Romano M., Baralle F. E. Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. EMBO J. 2001;20:1774–84.
[11] Niksic M., Romano M., Buratti E., Pagani F., Baralle F. E. Functional analysis of cis-acting elements regulating the alternative splicing of human CFTR exon 9. Hum Mol Genet. 1999;8:2339–49.
[12] Kuo, P. H., Doudeva L. G., Wang, Y. T., Shen, C. K. J., Yuan, H. S. Structural insights into TDP-43 in nucleic-acid binding and domain interactions. Nucleic Acids Res. 2009;37:1799–808.
[13] Narayanan R. K., Mangelsdorf M., Panwar A., Butler T. J., Noakes P. G., Wallace R. H. Identification of RNA bound to the TDP-43 ribonucleoprotein complex in the adult mouse brain. Amyotroph Lateral Scler Front Degener. 2013;14:252–60.
[14] Chang, C., Wu, T. H., Wu, C. Y., Chiang, M., Toh, E. K. W., Hsu, Y. C., et al. The N-terminus of TDP-43 promotes its oligomerization and enhances DNA binding affinity. Biochem Biophys Res Commun. 2012;425:219–24.
[15] Gu, J., Chen, F., Iqbal, K., Gong, C. X., Wang, X., Liu, F. Transactive response DNA-binding protein 43 (TDP-43) regulates alternative splicing of tau exon 10: Implications for the pathogenesis of tauopathies. J Biol Chem 2017;292:10600–12.
[16] Black, D. L. Mechanisms of Alternative Pre-Messenger RNA Splicing. Annual Review of Biochemistry. 2003;72:291–336.
[17] Cystic Fibrosis | EURASNET | The James Hutton Institute n.d. http://eurasnet.webarchive.hutton.ac.uk/scientists/alternative-splicing-and-disease/list-of-diseases/cystic-fibrosis
[18] Buratti E., Baralle F. E. Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J Biol Chem. 2001;276:36337–43.
[19] Lukavsky P. J., Daujotyte D., Tollervey J. R., Ule J., Stuani C., Buratti E., et al. Molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43. Nat Struct Mol Biol. 2013;20:1443–9.
[20] Kuo, P. H., Chiang, C. H., Wang, Y. T., Doudeva L. G., Yuan, H. S. The crystal structure of TDP-43 RRM1-DNA complex reveals the specific recognition for UG- and TG-rich nucleic acids. Nucleic Acids Res. 2014;42:4712–22.
[21] Rajkowitsch L., Chen, D., Stampfl S., Semrad K., Waldsich C., Mayer O., et al. RNA chaperones, RNA annealers and RNA helicases. RNA Biol. 2007;4:118–30.
[22] Saldi T. K., Ash P. E., Wilson G., Gonzales P., Garrido-Lecca A., Roberts C. M., et al. TDP-1, the Caenorhabditis elegans ortholog of TDP-43, limits the accumulation of double-stranded RNA. EMBO J. 2014;33:2947–66.
[24] Da C. S., Cleveland D. W. Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Curr Opin Neurobiol. 2011;21:904–19.
[25] Cuppens H., Lin, W., Jaspers M., Costes B., Teng, H., Vankeerberghen A., et al. Polyvariant mutant cystic fibrosis transmembrane conductance regulator genes. The polymorphic (Tg)m locus explains the partial penetrance of the T5 polymorphism as a disease mutation. J Clin Invest. 1998;101:487–96.
[26] Ritort F.. Single-molecule experiments in biological physics: methods and applications. J Phys Condens Matter Inst Phys J 2006;18:R531-583.
[27] Ishikawa-Ankerhold H. C., Ankerhold R., Drummen G. P. C.. Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM. Mol Basel Switz. 2012;17:4047–132.
[28] Axelrod D. Total internal reflection fluorescence microscopy in cell biology. Traffic Cph Den. 2001;2:764–74.
[29] 李以仁、許顥頤、秦志皞、吳佳諭。2015。單分子螢光共振能量轉移光譜簡介。化學,73卷4期,303-12。
[30] 倪丞緯。2017。以單分子光譜觀測 CTG 重複序列的滑動現象。碩士學位論文。台北:國立臺灣師範大學化學所。
[31] 黃子芸。2016。利用單分子技術研究小腦失調症第 31 型特殊連續 TGGAA 重複序列結構動態學。碩士學位論文。台中:國立中興大學基因體暨生物資訊學研究所。
[32] Chang, C., Chiang, M., Toh, E. K. W., Chang, C. F., Huang, T. Molecular mechanism of oxidation-induced TDP-43 RRM1 aggregation and loss of function. FEBS Lett. 2013;587:575–82.
[33] Grewer C., Brauer H. D. Mechanism of the Triplet-State Quenching by Molecular Oxygen in Solution. J Phys Chem. 1994;98:4230–5.
[34] Koker T. H. de, Mozuch M. D., Cullen D., Gaskell J., Kersten P. J. Isolation and Purification of Pyranose 2-Oxidase from Phanerochaete chrysosporium and Characterization of Gene Structure and Regulation. Appl Env Microbiol. 2004;70:5794–800.
[35] Cordes T., Vogelsang J., Tinnefeld P. On the Mechanism of Trolox as Antiblinking and Antibleaching Reagent. J Am Chem Soc. 2009;131:5018–9.
[36] Roy R., Hohng S., Ha T. A practical guide to single-molecule FRET. Nat Methods. 2008;5:507–16.
[37] Sabanayagam C. R., Eid J. S., Meller A. Using fluorescence resonance energy transfer to measure distances along individual DNA molecules: Corrections due to nonideal transfer. J Chem Phys. 2005;122:061103.
[38] McKinney S. A., Joo C., Ha T. Analysis of Single-Molecule FRET Trajectories Using Hidden Markov Modeling. Biophys J. 2006;91:1941–51.
[39] Nakano S., Fujimoto M., Hara H., Sugimoto N. Nucleic acid duplex stability: influence of base composition on cation effects. Nucleic Acids Res. 1999;27:2957–65.
[40] Sutherland G. R., Richards R. I. Simple tandem DNA repeats and human genetic disease. Proc Natl Acad Sci U S A. 1995;92:3636–41.