研究生: |
史諭樵 Yu-Chiao Shih |
---|---|
論文名稱: |
設計及合成具有四位及六位取代的嘧啶核苷作為具有潛力的ODCase抑制劑 Design and Synthesis of 4- or 6-Substituted Pyrimidine Nucleosides as Potential Inhibitors for Orotidine 5'-Monophosphate Decarboxylase |
指導教授: | 簡敦誠 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | ODCase |
論文種類: | 學術論文 |
相關次數: | 點閱:184 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本論文針對 orotidine 5’-monophosphate decarboxylase (ODCase) 設計 6-aryluridine 衍生物,希望合成出對 ODCase 具有生物活性的化合物,並作為可能的 ODCase 抑制劑。
首先,期望利用 C-C 鍵的生成,得到 6-aryluridine 衍生物。我們使用文獻方法,合成 6-halouridine 衍生物,再進行 Suzuki coupling 及 Stille coupling 反應,但實驗結果未能得到預期的產物。
接者,我們改用 click chemistry 來合成 6-aryluridine 衍生物。以 1,3-dimethyl-6-chlorouracil 與 NaN3 進行親核性取代反應得到 6-azido-1,3-dimethyluracil ,再與 acetylene 進行 Huisgen 1,3-dipolar 環化加成反應,得到具有 1,2,3-triazole 取代的 uracil 衍生物。
另外,希望以相同的方法合成出具有 1,2,3-triazole 的 uridine 衍生物。以醣已保護的 uridine 衍生物作為反應起始物,與 LDA 作用,再與 iodine 反應得到 6-iodouridine 衍生物,再利用模型反應的條件可以得到預期的 6-(1,2,3-triazolyl)uridine 衍生物。後續利用三氟醋酸去除 tert-butyldimethylsilyl 及 isopropylidene 保護,由於產物的不穩定,未能得到預期的 triazolyluridine 產物。在本論文中,我們成功地利用 click chemistry 製備 6-(1,2,3-triazolyl)uridine 衍生物,醣的去保護方法仍需要再深入研究。
Abstract
We have designed 6-aryluridine derivatives targeting on orotidine 5’-monophosphate decarboxylase (ODCase) as potential inhibitors and chemotherapeutic agents.
We anticipated to utilize C-C bond formation approach to introduce the 6-aryl substituent on uridine. 6-Halouridine derivatives were prepared by literature procedures. However, both Suzuki coupling and Stille coupling reaction failed to afford the desired 6-aryluridine derivatives.
We then utilized click chemistry to prepare 6-aryluridine derivatives. 1,3-Dimethyl-6-chlorouracil was treated with sodium azide to give 6-azido-1,3-dimethyluracil by nucleophilic substitution reaction. Huisgen 1,3-dipolar cycloaddition reaction of the azidouracil with acetylene in the presence of Cu(I) catalyst afforded 1,2,3-triazole substituted uracil in good yield.
The same approach was applied to the synthesis of 1,2,3-triazole substituted uridine derivatives. The suger-protected uridine derivative was used as a starting material and was treated with lithium diisopropylamide, and then was reacted with iodine to give the corresponding 6-iodouridine derivative. The azido group was introduced by nucleophilic substitution reaction. The 6-azidouridine derivative underwent 1,3-dipolar cycloqddition to afford the corresponding 1,2,3-triazole. The removal of tert-butyldimethylsilyl and isopropylidene group with trifluoroacetic acid was unsuccessful to give the desired product. We have successfully prepared 6-(1,2,3-triazolyl)uridine derivative. The deprotection of suger moiety needs further investigation.
1. Wu, W.; Ley-han, A.; Wong, F. M.; Austin, T. J.; and Millert S. M. Decarboxylation of 1,3-dimethylorotic acid revisited: determining the role of N-l . Bioorg. Med. Chem. Lett. 1997, 7, 2623-2628.
2. Nakanishi, M. P.; and Wu, W. Mechanism of decarboxylation of l,3-dimethylorotic acid revisited: trapping of the reaction intermediate. Tetrahedron Lett. 1998, 39, 6271-6272.
3. Cui, W.; DeWitt, J. G.; Miller, S. M.; and Wu, W. No metal cofactor in orotidine 5’-monophosphate decarboxylase. Biochem. and Biophy. Res. Commun. 1999, 259, 133–135.
4. Feng, W. Y.; Austin, T. J.; Chew, F.; Gronert, S.; and Wu, W. The mechanism of orotidine 5’-monophosphate decarboxylase: catalysis by destabilization of the substrate. Biochemistry 2000, 39, 1778-1783.
5. Bello, A. M.; Poduch, E.; Fujihashi, M.; Amani, M.; Li, Y.; Crandall, I.; Hui, R.; Lee, P. I.; Kain, K. C.; Pai, E. F.; and Kotra, L. P. A potent, covalent inhibitor of orotidine 5’-monophosphate decarboxylase with antimalarial activity. J. Med. Chem. 2007, 50, 915-921.
6. Poduch, E.; Wei, L.; Pai, E. F.; and Kotra, L. P. Structural diversity and plasticity associated with nucleotides targeting orotidine monophosphate decarboxylase. J. Med. Chem. 2008, 51, 432–438.
7. Bello, A. M.; Poduch, E.; Liu, Y.; Wei, L.; Crandall, I.; Wang, X.; Dyanand, C.; Kain, K. C.; Pai, E. F.; and Kotra, L. P. Structure–activity relationships of C6-uridine derivatives targeting Plasmodia orotidine monophosphate decarboxylase. J. Med. Chem. 2008, 51, 439–448.
8. Haraguchi, K.; Shimada, H.; Tanaka, H.; Hamasaki, T.; Baba, M.; Gullen, E. A.; Dutschman, G. E.; and Cheng, Y. C. Synthesis and anti-HIV activity of 4’-substituted 4’-thiothymidines: a new entry based on nucleophilic substitution of the 4’-acetoxy group. J. Med. Chem. 2008, 51, 1885–1893.
9. Bell, J. B.; and Jones, M. E. Purification and characterization of yeast orotidine 5’-monophosphate decarboxylase overexpressed from plasmid PGU2. J. Biol. Chem. 1991, 266, 12662-12667.
10. Radzicka, A., Wolfenden, R. A proficient enzyme. Science 1995, 267, 90-93.
11. Beak, P.; and Siegel, B. Mechanism of decarboxylation of 1,3-dimethylorotic acid. a model for orotidine 5'-phosphate decarboxylase. J. Am. Chem. Soc. 1976, 98, 3601-3606.
12. Lee, J. K.; and Houk, K. N. A proficient enzyme revisited: the predicted mechanism for orotidine monophosphate decarboxylase. Science 1997, 276, 942-945.
13. Wu, N.; Moi, Y.; Gao, J.; and Pai, E. F. Electrostatic stress in catalysis: structure and mechanism of the enzyme orotidine monophosphate decarboxylase. Proc. Natl. Acad. Sci. USA 2000, 97, 2017-2022.
14. Lee, T. S.; Chong, L. T.; Chodera, J. D.; and Kollman, P. A. An alternative explanation for the catalytic proficiency of orotidine 5’-phosphate decarboxylase. J. Am. Chem. Soc. 2001, 123, 12837-12848.
15. Silverman, R. B.; and Groziak, M. P. Model chemistry for a covalent mechanism of action of orotidine 5'-phosphate decarboxylase. J. Am. Chem. Soc. 1982, 104, 6434-6439.
16. Gronert, S.; Feng, W. Y.; Chew, F.; Wu, W. The gas phase acid/base properties of 1,3-dimethyluracil, 1- methyl-2-pyridone, and 1-methyl-4-pyridone: relevance to the mechanism of orotidine-5’- monophosphate decarboxylase. Int. J. Mass Spectrom. 2000, 195/ 196, 251–258.
17. Silverman, R. B., The organic chemisrry of enzyme-catalyzed reactions (Academic Press, California, 2000) 349-353 pp.
18. Lieberman, I.; Kornberg, A.; and Simms, E. S. Enzymatic synthesis of pyrimidine nucleotides. orotidine-5’-phosphate and uridine-5’-phosphate. J. Biol. Chem. 1955, 215, 403-415.
19. Levine, H. L.; Brody, R. S.; and Westheimer, F. H. Inhibition of orotidine-5’-phosphate decarboxylase by 1-( 5’-phospho-β-D-
ribofuranosyl) barbitur acid, 6-azauridine 5’-phosphate, and uridine 5’-phosphate. Biochemistry 1980, 19, 4993-4999.
20. Shostak, K.; and Jones, M. E. Orotidylate decarboxylase: insights into the catalytic mechanism from substrate specificity studies. Biochemistry 1992, 31, 12155-12161.
21. Miller, B. G.; Snider, M. J.; Wolfenden, R.; and Short, S. A. dissecting a charged network at the active site of orotidine-5’-
phosphate decarboxylase. J. Biol. Chem. 2001, 276, 15174–15176.
22. Fujihashi, M.; Bello, A. M.; Poduch, E.; Wei, L.; Annedi, S. C.; Pai, E. F.; and Kotra, L. P. An unprecedented twist to ODCase catalytic activity. J. Am. Chem. Soc. 2005, 127, 15048-15050.
23. Poduch, E.; Bello, A. M.; Tang, S.; Fujihashi, M.; Pai, E. F.; and Kotra, L. P. Design of inhibitors of orotidine monophosphate decarboxylase using bioisosteric replacement and determination of inhibition kinetics. J. Med. Chem. 2006, 49, 4937-4945.