簡易檢索 / 詳目顯示

研究生: 史諭樵
Yu-Chiao Shih
論文名稱: 設計及合成具有四位及六位取代的嘧啶核苷作為具有潛力的ODCase抑制劑
Design and Synthesis of 4- or 6-Substituted Pyrimidine Nucleosides as Potential Inhibitors for Orotidine 5'-Monophosphate Decarboxylase
指導教授: 簡敦誠
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 78
中文關鍵詞: ODCase
論文種類: 學術論文
相關次數: 點閱:169下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本論文針對 orotidine 5’-monophosphate decarboxylase (ODCase) 設計 6-aryluridine 衍生物,希望合成出對 ODCase 具有生物活性的化合物,並作為可能的 ODCase 抑制劑。
    首先,期望利用 C-C 鍵的生成,得到 6-aryluridine 衍生物。我們使用文獻方法,合成 6-halouridine 衍生物,再進行 Suzuki coupling 及 Stille coupling 反應,但實驗結果未能得到預期的產物。
    接者,我們改用 click chemistry 來合成 6-aryluridine 衍生物。以 1,3-dimethyl-6-chlorouracil 與 NaN3 進行親核性取代反應得到 6-azido-1,3-dimethyluracil ,再與 acetylene 進行 Huisgen 1,3-dipolar 環化加成反應,得到具有 1,2,3-triazole 取代的 uracil 衍生物。
    另外,希望以相同的方法合成出具有 1,2,3-triazole 的 uridine 衍生物。以醣已保護的 uridine 衍生物作為反應起始物,與 LDA 作用,再與 iodine 反應得到 6-iodouridine 衍生物,再利用模型反應的條件可以得到預期的 6-(1,2,3-triazolyl)uridine 衍生物。後續利用三氟醋酸去除 tert-butyldimethylsilyl 及 isopropylidene 保護,由於產物的不穩定,未能得到預期的 triazolyluridine 產物。在本論文中,我們成功地利用 click chemistry 製備 6-(1,2,3-triazolyl)uridine 衍生物,醣的去保護方法仍需要再深入研究。

    Abstract
    We have designed 6-aryluridine derivatives targeting on orotidine 5’-monophosphate decarboxylase (ODCase) as potential inhibitors and chemotherapeutic agents.
    We anticipated to utilize C-C bond formation approach to introduce the 6-aryl substituent on uridine. 6-Halouridine derivatives were prepared by literature procedures. However, both Suzuki coupling and Stille coupling reaction failed to afford the desired 6-aryluridine derivatives.
    We then utilized click chemistry to prepare 6-aryluridine derivatives. 1,3-Dimethyl-6-chlorouracil was treated with sodium azide to give 6-azido-1,3-dimethyluracil by nucleophilic substitution reaction. Huisgen 1,3-dipolar cycloaddition reaction of the azidouracil with acetylene in the presence of Cu(I) catalyst afforded 1,2,3-triazole substituted uracil in good yield.
    The same approach was applied to the synthesis of 1,2,3-triazole substituted uridine derivatives. The suger-protected uridine derivative was used as a starting material and was treated with lithium diisopropylamide, and then was reacted with iodine to give the corresponding 6-iodouridine derivative. The azido group was introduced by nucleophilic substitution reaction. The 6-azidouridine derivative underwent 1,3-dipolar cycloqddition to afford the corresponding 1,2,3-triazole. The removal of tert-butyldimethylsilyl and isopropylidene group with trifluoroacetic acid was unsuccessful to give the desired product. We have successfully prepared 6-(1,2,3-triazolyl)uridine derivative. The deprotection of suger moiety needs further investigation.

    目錄 英文摘要 中文摘要 第一章 緒論 1 1-1. Orotidine 5’-monophosphate decarboxylase (ODCase) 1 1-1-1 簡介 1 1-1-2 應用 3 1-2 ODCase反應機制 4 1-3 ODCase 的受質及抑制化合物 6 1-4 化合物設計 11 1-5 參考文獻 13 第二章 6-Aryl pyrimidine的合成方法 17 2-1 緒論 17 2-2 C-C 鍵接合的 Stille coupling 、 Suzuki coupling 17 2-2-1 Stille coupling 18 2-2-2 Suzuki coupling 19 2-3 C-C 鍵接合的化學方法 20 2-3-1 嘧啶C-5位置的接合反應 21 2-3-2 嘧啶C-6位置的接合反應 27 2-4 結論 30 2-5 參考文獻 30 第三章 6-halouridine 的合成 33 3-1 緒論 33 3-2 化學合成方法 33 3-3 合成策略與方法 43 3-4 結果與討論 43 3-5 結論 47 3-6 參考文獻 47 第四章 嘧啶核苷的C-6 Suzuki coupling 50 4-1 緒論 50 4-2 合成策略與方法 50 4-3 結果與討論 50 4-4 結論 53 4-5 參考文獻 53 第五章 嘧啶核苷的Click Chemistry 55 5-1 緒論 55 5-2 化學合成 55 5-3 合成策略與方法 59 5-4 結果與討論 60 5-5 結論 65 5-6 參考文獻 66 第六章 總結 68 第七章 使用儀器及實驗步驟 70 7-1 一般實驗處理 70 7-2 儀器設備 70 7-3 實驗步驟 71 7-4 參考文獻 77 第八章 光譜圖 78

    1. Wu, W.; Ley-han, A.; Wong, F. M.; Austin, T. J.; and Millert S. M. Decarboxylation of 1,3-dimethylorotic acid revisited: determining the role of N-l . Bioorg. Med. Chem. Lett. 1997, 7, 2623-2628.
    2. Nakanishi, M. P.; and Wu, W. Mechanism of decarboxylation of l,3-dimethylorotic acid revisited: trapping of the reaction intermediate. Tetrahedron Lett. 1998, 39, 6271-6272.
    3. Cui, W.; DeWitt, J. G.; Miller, S. M.; and Wu, W. No metal cofactor in orotidine 5’-monophosphate decarboxylase. Biochem. and Biophy. Res. Commun. 1999, 259, 133–135.
    4. Feng, W. Y.; Austin, T. J.; Chew, F.; Gronert, S.; and Wu, W. The mechanism of orotidine 5’-monophosphate decarboxylase: catalysis by destabilization of the substrate. Biochemistry 2000, 39, 1778-1783.
    5. Bello, A. M.; Poduch, E.; Fujihashi, M.; Amani, M.; Li, Y.; Crandall, I.; Hui, R.; Lee, P. I.; Kain, K. C.; Pai, E. F.; and Kotra, L. P. A potent, covalent inhibitor of orotidine 5’-monophosphate decarboxylase with antimalarial activity. J. Med. Chem. 2007, 50, 915-921.
    6. Poduch, E.; Wei, L.; Pai, E. F.; and Kotra, L. P. Structural diversity and plasticity associated with nucleotides targeting orotidine monophosphate decarboxylase. J. Med. Chem. 2008, 51, 432–438.
    7. Bello, A. M.; Poduch, E.; Liu, Y.; Wei, L.; Crandall, I.; Wang, X.; Dyanand, C.; Kain, K. C.; Pai, E. F.; and Kotra, L. P. Structure–activity relationships of C6-uridine derivatives targeting Plasmodia orotidine monophosphate decarboxylase. J. Med. Chem. 2008, 51, 439–448.
    8. Haraguchi, K.; Shimada, H.; Tanaka, H.; Hamasaki, T.; Baba, M.; Gullen, E. A.; Dutschman, G. E.; and Cheng, Y. C. Synthesis and anti-HIV activity of 4’-substituted 4’-thiothymidines: a new entry based on nucleophilic substitution of the 4’-acetoxy group. J. Med. Chem. 2008, 51, 1885–1893.
    9. Bell, J. B.; and Jones, M. E. Purification and characterization of yeast orotidine 5’-monophosphate decarboxylase overexpressed from plasmid PGU2. J. Biol. Chem. 1991, 266, 12662-12667.
    10. Radzicka, A., Wolfenden, R. A proficient enzyme. Science 1995, 267, 90-93.
    11. Beak, P.; and Siegel, B. Mechanism of decarboxylation of 1,3-dimethylorotic acid. a model for orotidine 5'-phosphate decarboxylase. J. Am. Chem. Soc. 1976, 98, 3601-3606.
    12. Lee, J. K.; and Houk, K. N. A proficient enzyme revisited: the predicted mechanism for orotidine monophosphate decarboxylase. Science 1997, 276, 942-945.
    13. Wu, N.; Moi, Y.; Gao, J.; and Pai, E. F. Electrostatic stress in catalysis: structure and mechanism of the enzyme orotidine monophosphate decarboxylase. Proc. Natl. Acad. Sci. USA 2000, 97, 2017-2022.
    14. Lee, T. S.; Chong, L. T.; Chodera, J. D.; and Kollman, P. A. An alternative explanation for the catalytic proficiency of orotidine 5’-phosphate decarboxylase. J. Am. Chem. Soc. 2001, 123, 12837-12848.
    15. Silverman, R. B.; and Groziak, M. P. Model chemistry for a covalent mechanism of action of orotidine 5'-phosphate decarboxylase. J. Am. Chem. Soc. 1982, 104, 6434-6439.
    16. Gronert, S.; Feng, W. Y.; Chew, F.; Wu, W. The gas phase acid/base properties of 1,3-dimethyluracil, 1- methyl-2-pyridone, and 1-methyl-4-pyridone: relevance to the mechanism of orotidine-5’- monophosphate decarboxylase. Int. J. Mass Spectrom. 2000, 195/ 196, 251–258.
    17. Silverman, R. B., The organic chemisrry of enzyme-catalyzed reactions (Academic Press, California, 2000) 349-353 pp.
    18. Lieberman, I.; Kornberg, A.; and Simms, E. S. Enzymatic synthesis of pyrimidine nucleotides. orotidine-5’-phosphate and uridine-5’-phosphate. J. Biol. Chem. 1955, 215, 403-415.
    19. Levine, H. L.; Brody, R. S.; and Westheimer, F. H. Inhibition of orotidine-5’-phosphate decarboxylase by 1-( 5’-phospho-β-D-
    ribofuranosyl) barbitur acid, 6-azauridine 5’-phosphate, and uridine 5’-phosphate. Biochemistry 1980, 19, 4993-4999.
    20. Shostak, K.; and Jones, M. E. Orotidylate decarboxylase: insights into the catalytic mechanism from substrate specificity studies. Biochemistry 1992, 31, 12155-12161.
    21. Miller, B. G.; Snider, M. J.; Wolfenden, R.; and Short, S. A. dissecting a charged network at the active site of orotidine-5’-
    phosphate decarboxylase. J. Biol. Chem. 2001, 276, 15174–15176.
    22. Fujihashi, M.; Bello, A. M.; Poduch, E.; Wei, L.; Annedi, S. C.; Pai, E. F.; and Kotra, L. P. An unprecedented twist to ODCase catalytic activity. J. Am. Chem. Soc. 2005, 127, 15048-15050.
    23. Poduch, E.; Bello, A. M.; Tang, S.; Fujihashi, M.; Pai, E. F.; and Kotra, L. P. Design of inhibitors of orotidine monophosphate decarboxylase using bioisosteric replacement and determination of inhibition kinetics. J. Med. Chem. 2006, 49, 4937-4945.

    無法下載圖示 本全文未授權公開
    QR CODE