研究生: |
戴莉 Tai Li |
---|---|
論文名稱: |
鄂霍次克海深海沈積物鐵錳相的鉬含量與鉬同位素之初步探討 Preliminary Study for Molybdenum Concentration and Isotope Composition of Sedimentary Fe-Mn Oxyhydroxides in a Deep-Sea Core from the Okhotsk Sea. |
指導教授: |
余英芬
Yu, Ein-Fen 李德春 Lee, Der-Chuen |
學位類別: |
碩士 Master |
系所名稱: |
海洋環境科技研究所 Graduate Institute of Marine Environmental Science and Technology |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 41 |
中文關鍵詞: | 鄂霍次克海 、鐵錳萃取相 、鉬元素 、鉬同位素變動 |
英文關鍵詞: | The Okhotsk Sea, Sedimentary Fe-Mn oxyhydroxides, Molybdenum, Molybdenum isotopic composition |
論文種類: | 學術論文 |
相關次數: | 點閱:190 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來多接受器感應電漿質譜儀(MC-ICP-MS)迅速發展,使學術界對於原本難以解離的過渡元素—鉬元素,得以有進一步的研究和了解。前人研究中對水體中的鉬元素與同位素的研究主要包含陸地湖泊、河流、河口、開放大洋、封閉海盆;並且包含錳核、遠洋沈積物、火成岩、熱液、冰川等,但對鉬的研究以區域的涵蓋而言仍有限。鄂霍次克海為西北太平洋的邊緣海,具有陸地及開放大洋的訊號,也含有極區的特性。因此本論文工作希望透過深海沈積岩芯的分析以期探究鄂霍次克海地區的鉬及其同位素的變動。
本論文研究使用岩芯MD012414的深海沈積物標本,經萃取沈積物鐵錳相取得澄清液後,取少量進行鉬含量分析;再經層析法純化鉬元素並利用質譜儀及雙示蹤劑同位素分析技術取得鉬同位素訊號值。然後經過重複分析及不同比例添加劑的鐵錳相萃取實驗之驗證後,確認本論文工作的鉬含量及同位素值之實驗分析結果確為標本源自海洋環境系統的訊號。
經前人研究得知海洋中鉬同位素的變動可受到來源、氧化還原環境及成岩作用的影響。萃取沈積物鐵錳相可排除陸源影響,反應海水環境的訊號。研究得知在自生鐵錳氧化物吸附下的氧化鉬之鉬同位素δ98/95Mo =–0.7‰;還原環境下硫化鉬之鉬同位素為δ98/95Mo =2.3‰。另外,在已知的研究發現早期成岩作用中鉬同位素的變動範圍為δ98/95Mo =–0.7~3.5‰。而本論文工作結果顯示MD012414之鉬含量為15.7ppb~162.8ppb,鉬同位素值為–0.99~–3.12‰;此些結果與前人研究比較,都顯示本論文工作的鉬同位素值偏輕,因此認為除了反應成岩作用及氧化環境外,鄂霍次克海之鉬含量的變動與同位素分化的機制當需進一步的探討。
Recent developments in analytical technique, particularly the advantages of Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS), have allowed the precise determination of differences in the isotope compositions of Mo between samples and reference standards. Previously studies about Mo concentration and isotope composition included water samples from lake, river, estuary, open ocean and restricted basins. Other studies such as Mo concentration and isotope of manganese nodules, pelagic sediments, igneous rock, fluids of hydrothermal vent and glacials are also reported as well. However, about Mo and δ98/95Mo of a marginal sea like the Okhotsk Sea has yet been studied. The sea of Okhotsk is a marginal sea of the northwest Pacific Ocean, it accompanies with terrigenous and open ocean signals. This thesis study is hoped to add more understanding about the geochemistry of molybdenum and its isotope fractionation in the marginal sea.
The experiments included a sequential leaching technique to extract the authigenic molybdenum coating on the sedimentary Fe-Mn oxyhydroxides, and a robust chromatography technique to purify molybdenum for isotope composition analyses. This procedure is different from previous studies which apply whole bulk sediment for Mo concentration and isotope analyses. In addition, the double spike technique is used to analyze Mo isotope compositions.
Previous studies have shown that materials sources, redox conditions and early diagenesis largely influence Mo isotopic compositions. Under oxic condition, molybdate (MoO3) coating with authigenic ferromanganese crusts shows an average value of δ98/95Mo =–0.7‰. On the other hand, under anoxic condition which shows the analyses of tetrathiomolybdate (MoS42-) with a much heavier isotope value of δ98/95Mo =2.3‰. Compared to previous studies, Mo isotope compositions present in this study show much lighter values.
壹、中文文獻
周佑民 (2003) 鄂霍次克海岩芯MD012414之磁學研究—180萬年來東北亞古氣候及古環境變遷。國立台灣師範大學地球科學研究所碩士論文。
汪良奇 (2004) 鄂霍次克海化石矽藻類群研究—重建178萬年來海冰變化與古氣候變遷。國立彰化師範大學生物學系碩士論文。
劉亞君(2007)西北太平洋鄂霍次克海1.8百萬年來之環境變遷。國立台灣大學地質科學研究所碩士論文。
陳志華 (2010) 南海沉積物自生鐵錳氧化物中稀土元素及釹、鉿同位素成分:重建南海過去三千萬年以來深水循環之演化史。國立成功大學地球科學研究所碩士論文。
劉信廷 (2013) 多接收器感應耦合電漿質譜儀(MC-ICPMS)之鉬同位素分析技術及貝加爾湖岩芯中鉬同位素之研究。國立台灣師範大學地球科學研究所碩士論文。
貳、英文文獻
Anbar A.D., Knab K.A. and Barling J. (2001) Precise determination of mass-dependent variations in the isotopic composition of molybdenum using MC-ICPMS. Analytical Chemistry, 73(7): 1425-1431.
Anbar A.D. (2004) Molybdenum stable isotopes: Observations, interpretations and directions. In: C.M. Johnson, B.L. Beard and F. Albarede (Editors), Geochemistry of Non-Traditional Stable Isotopes. Reviews in Mineralogy & Geochemistry, pp. 429-454.
Barling J., Arnold G.L. and Anbar A.D. (2001) Natural mass-dependent variations in the isotopic composition of molybdenum. Earth and Planetary Science Letters, 193(3-4): 447-457.
Barling J. and Anbar A.D. (2004) Molybdenum isotope fractionation during adsorption by manganese oxides. Earth and Planetary Science Letters, 217(3-4): 315-329.
Bayon G., German C.R., Burton K.W., Nesbitt R.W. and Rogers N. (2004) Sedimentary Fe-Mn oxyhydroxides as paleoceanographic archives and the role of aeolian flux in regulating oceanic dissolved REE. Earth and Planetary Science Letters 224(3-4): 477-492.
Bertine K.K., and Turekian K. (1973). Molybdenum in marine deposits. Geochimica et Cosmochimica Acta, 37(6): 1415-1434.
Broecker W. S. (1982) Ocean chemistry during glacial time. Geochimica Et Cosmochimica Acta 46(10): 1689-1705.
Chou Y.-M., Lee T.Q., Song S.R. and Cheng K.J. (2011) Magnetostratigraphy of marine sediment core MD01-2414 from Okhotsk Sea and its paleoenvironmental implications. Marine Geology 284(1-4): 149-157.
Collier R.W. (1985) Molybdenum in the northeast Pacific-Ocean. Limnology and Oceanography, 30(6): 1351-1354.
Erickson B.E. and Helz G.R. (2000) Molybdenum(VI) speciation in sulfidic waters: Stability and lability of thiomolybdates. Geochimica Et Cosmochimica Acta 64(7): 1149-1158.
Emerson S.R. and Huested S.S. (1991) Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Marine Chemistry, 34(3-4): 177-196.
Galer S.J.G. (1999). Optimal double and triple spiking for high precision lead isotopic measurement. Chemical Geology, 157(3-4): 255-274.
Helz G.R., Miller C.V., Charnock J.M., Mosslemans J.F.W., Pattrick R.A.D., Garner C.D. and Vaughan D.J. (1996) Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochimica et Cosmochimica Acta, 60: 3631–3642.
Katsuki K., Khim B.K., Itaki T., Okazaki Y., Ikehara K., Shin Y., Yoon H.I. and Kang C.Y. (2010) Sea-ice distribution and atmospheric pressure patterns in southwestern Okhotsk Sea since the Last Glacial Maximum. Global and Planetary Change 72(3): 99-107.
Kendall B., Creaser R.A. and Gordon G.W. (2009) Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia. Geochimica Et Cosmochimica Acta 73(9): 2534-2558.
Leonov A.K. (1960) Regional oceanography. Hydrometeoizdat, Leningrad, P. 765.
McManus J., Nagler T.F., Siebert C., Wheat C.G. and Hammond D.E. (2002) Oceanic molybdenum isotope fractionation: Diagenesis and hydrothermal ridge-flank alteration." Geochemistry Geophysics Geosystems, 3(12):1-9.
Morford J.L. and Emerson S. (1999) The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta, 63(11-12): 1735-1750.
Morochkin K.V. (1996) Water masses of Okhotsk sea. Nauka, Moscow, 67pp.
Morris A. W. (1975) Dissolved molybdenum and vanadium in northeast Atlantic ocean. Deep-Sea Research 22(1): 49-54.
Nakagawa Y., Firdaus M.L., Norisuye K., Sohrin Y., Irisawa K. and Hirata T. (2008) Precise isotopic analysis of Mo in seawater using Multiple Collector-Inductively Coupled Mass Spectrometry Coupled with a chelating resin column preconcentration method. Analytical Chemistry 80(23): 9213-9219.
Nakagawa Y., Takano S., Firdaus M.L., Norisuye K., Hirata T., Vance D. and Sohrin Y. (2012) The molybdenum isotopic composition of the modern ocean. Geochemical Journal, 46(2): 131-141.
Neubert N., Heri A.R., Voegelin A.R., Nägler T.F., Schlunegger F. and Villa I.M. (2011) The molybdenum isotopic composition in river water: Constraints from small catchments. Earth and Planetary Science Letters, 304(1-2): 180-190.
Neubert N., Nägler T.F. and Böttcher M.E. (2008) Sulfidity controls molybdenum isotope fractionation into euxinic sediments: Evidence from the modern Black Sea. Geology, 36(10): 775.
Okazaki Y., Takahashi K. and Katsuki K. (2005) Productivity changes in the Bering Sea during the late Quaternary. Deep-Sea Research Part Ii-Topical Studies in Oceanography, 52(16-18): 2150-2162.
Parkinson C., L. and Gratz A., J. (1983) On the seasonal sea ice cover of the sea of Okhotsk. Journal of geophysical research oceans and atmospheres, 88(NC5): 2793-2802
Pearce C.R., Burton K.W., von Strandmann P.A.E.P., James R.H. and Gíslason S.R. (2010) Molybdenum isotope behaviour accompanying weathering and riverine transport in a basaltic terrain. Earth and Planetary Science Letters, 295(1-2): 104-114.
Poulson R.L., Siebert C., McManus J. and Berelson W.M. (2006) Authigenic molybdenum isotope signatures in marine sediments. Geology, 34(8): 617.
Shimada C. and Hasegawa S. (2001) Paleoceanographic implications of a 90000 year long diatom record in piston core KH94-3, LM-8 off NE Japan. Mar. Micropaleontol. 41(3-4), 153-166.
Siebert C., Nägler T.F., von Blanckenburg F. and Kramers J.D. (2003) Molybdenum isotope records as a potential new proxy for paleoceanography. Earth and Planetary Science Letters, 211(1-2): 159-171.
Siebert C., McManus J., Bice A., Poulson R. and Berelson W.M. (2006) Molybdenum isotope signatures in continental margin marine sediments. Earth and Planetary Science Letters, 241(3-4): 723-733.
Stepanov V.N. (1974) World Ocean. Znznie, Moscow, 256 pp.
Tally L.D. and Nagata Y. (1995) The Okhotsk sea and Oyashio region. Working group 1. North Pac. Mar. Sci. Org. (PICES), science report 2. Institute of Ocean Science, Sidney, BC.
Taylor S. R. (1989) Rare-earth element patterns and crustal composition - a citation classic commentary on abundance of chemical-elements in the continental- crust - a new table by taylor,sr. Current Contents/Engineering Technology & Applied Sciences(11): 16-16.
Tossell J.A. (2005). Calculating the partitioning of the isotopes of Mo between oxidic and sulfidic species in aqueous solution. Geochimica et Cosmochimica Acta, 69(12): 2981-2993.
Wen H.J., Carignan J., Cloquet C., Zhu X.K. and Zhang Y.X. (2010) Isotopic delta values of molybdenum standard reference and prepared solutions measured by MC-ICP-MS: Proposition for delta zero and secondary references. Journal of Analytical Atomic Spectrometry, 25(5): 716-721.
Zheng Y., Anderson R.F., van Geen A. and Kuwabara J. (2000) Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin. Geochimica et Cosmochimica Acta, 64(24): 4165-4178.