簡易檢索 / 詳目顯示

研究生: 周時平
Chou Shih-Ping
論文名稱: 金門緬甸蟒(Python bivittatus bivittatus)的活動模式、棲地利用與體溫調節
Movements, habitat use and thermoregulation of Burmese python (Python bivittatus bivittatus) in Kinmen island
指導教授: 林思民
Lin, Si-Min
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 53
中文關鍵詞: 棲地利用活動範圍金門蟒科無線電追蹤
英文關鍵詞: habitat use, home range, Kinmen, Pythonidae, radio telemetry
論文種類: 學術論文
相關次數: 點閱:132下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 緬甸蟒(Python bivittatus bivittatus)是世界上最大型的蛇類之一,因為在美國為外來入侵種而惡名昭彰。由於緬甸蟒的入侵,許多關於緬甸蟒的研究受到高度的重視;然而針對於原生地族群的研究目前仍舊極度缺乏。在本研究中,我們將針對於原生地緬甸蟒的基礎生態資料進行調查,例如:活動模式、活動範圍、棲地利用以及體溫調節,以利未來為原生地緬甸蟒保育方面提供有效的管理策略。本研究自2010年五月至2013年二月以無線電追蹤進行資料收集,總共追蹤了12隻個體。結果顯示,緬甸蟒在夏季及秋季的夜晚頻繁活動,在溫暖的季節裡一個晚上的移動距離可以達到至少1.2公里,而一年內的活動範圍可達到892.7公頃。隨著季節的變化,緬甸蟒也有季節性的棲地利用,同時藉由改變棲地利用來調節體溫。在夏季會選擇高覆蓋度的棲地,並頻繁的使用沼澤、灌叢、草地以及森林的環境,避免白天體溫過高。而冬季則會選擇廢棄的軍方地下通道或是洞穴來躲藏,以躲避寒冬的低溫。

    The Burmese python Python bivittatus bivittatus, one of the largest snake species in the world, is famous due to its invasion to USA. Although quite a few studies have been conducted on the invasive population, scientific information of in the native range is still extremely scarce. In this study, we aim to investigate the basic ecological information of the python such as activity pattern, home range, habitat use, and thermoregulation in order to provide a proper management strategy for their conservation. From May 2010 to February 2013, radio telemetry was applied to track 12 individuals. The results showed that the pythons have a highest activity in summer and autumn nights, with the potential to move more than 1.2 km within a single night in warm seasons. The home range size may exceed 892.7 hectare within a year. The results also showed that seasonal habitat use could effectively help regulating their body temperature to avoid from extreme temperatures. The pythons chose high canopy cover habitat and frequently used marshes, shrubs, grasslands, forests in summers, while underground tunnels and caves were commonly used as refugia in winters.

    中文摘要…………………………………………………………………3 Abstract…………………………………...………………………………4 Introduction………………………………………………………………5 Materials and methods…………..…………………………….………….8 Results…………………………..……………..…………………..……14 Discussion………………………………………………………….……16 References……………………………………………………...….……22 Table 1 Gender, morphometric data and tracking details ………………26 Table 2 Home range size of the pythons in the four seasons…...……….27 Table 3 Dunn’s test values on daily movements……………...………....28 Table 4 Macrohabitat use of the pythons…………………….....……….29 Table 5 Adjusted standardized residuals tests of macrohabitat use...…...29 Table 6 Microhabitat use of the pythons………………...………....…...30 Table 7 Adjusted standardized residuals tests of microhabitat use……...30 Table 8 Dunn’s test value of canopy cover……………………..……….31 Table 9 Air temperature and pythons’ body temperature..........................32 Table 10 Home range comparison from literature………………………33 Figure 1 Python records and military forces……………………………34 Figure 2 Phylogeny and gene genealogy of pythons…………….……...35 Figure 3 Home range sizes of pythons during the tracking period…..….36 Figure 4 Home range sizes of all pythons in different seasons……….37 Figure 5 Moving distance per day in all seasons…………….………….38 Figure 6 Moving distance per day during daytime and nighttime………39 Figure 7 Percentage of macrohabitat use of the pythons………………..40 Figure 8 Percentage of microhabitat use of the pythons………………..40 Figure 9 Canopy cover where the python stayed……………………….41 Figure 10 Pythons’ body temperatures in daytime……………………42 Figure 11 Pythons’ body temperatures in nighttime………..…………...43 Figure 12 Reduced body condition of a python…………….....………..44 Figure 13 Body temperature of pythons during a cold spell...………….45 Appendix 1 Definition of macrohabitats……….……….………………46 Appendix 2 Home range of all pythons..…………….………………….48 Appendix 3 Moving route of all pythons………...……………………..51

    Alexander, G. J. (2006). Thermal biology of the Southern African Python (Python natalensis): does temperature limit its distribution? In R. W. Henderson & R. Powell (Eds.), Biology of the boas and pythons. Eagle Mountain, USA: Eagle Mountain Publishing.
    Avery, M. L., Engeman, R. M., Keacher, K. L., Humphrey, J. S., Bruce, W. E., Mathies, T. C., & Mauldin, R. E. (2010). Cold weather and the potential range of invasive Burmese pythons. Biological Invasions, 12(11), 3649-3652.
    Barker, D. G., & Barker, T. M. (2008). The distribution of the Burmese Python, Python molurus bivittatus. Bulletin of the Chicago Herpetological Society, 43(3), 33-38.
    Barker, D. G., & Barker, T. M. (2010). A critique of the analysis used to predict the climate space of the Burmese python in the United States by Rodda et al. (2008, 2009) and Reed and Rodda (2009). Bulletin of the Chicago Herpetological Society, 45(6), 97-106.
    Barker, D. G., Barten, S. L., Ehrsam, J. P., & Daddono, L. (2012). The corrected lengths of two well-known giant pythons and the establishment of a new maximum length record for Burmese pythons, Python bivittatus. Bulletin of the Chicago Herpetological Society, 47(1), 1-6.
    Beyer, H. L. (2004). Hawth's Analysis Tools for ArcGIS. Available at http://www.spatialecology.com/htools.
    Brito, J. C. (2003). Seasonal variation in movements, home range, and habitat use by male Vipera latastei in northern Portugal. Journal of Herpetology, 37(1), 155-160.
    Christian, K. A., & Tracy, C. R. (1981). The effect of the thermal environment on the ability of hatchling Galapagos land iguanas to avoid predation during dispersal. Oecologia 49, 218-223.
    Dorcas, M. E., & Willson, J. D. (2011). Invasive pythons in the United States: ecology of an introduced predator: University of Georgia Press, USA.
    Dorcas, M. E., Willson, J. D., & Gibbons, J. W. (2010). Can invasive Burmese pythons inhabit temperate regions of the southeastern United States? Biological Invasions, 13(4), 793-802.
    Dorcas, M. E., Willson, J. D., Reed, R. N., Snow, R. W., Rochford, M. R., Miller, M. A., Meshaka, W. E., Andreadis, P. T., Mazzotti, F. J., Romagosa, C. M., & Hart, K. M. (2012). Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park. Proceedings of the National Academy of Sciences of the United States of America, 109, 2418-2422.
    Dove, C. J., Snow, R. W., Rochford, M. R., & Mazzotti, F. J. (2011). Birds Consumed by the Invasive Burmese Python (Python molurus bivittatus) in Everglades National Park, Florida, USA. The Wilson Journal of Ornithology, 123(1), 126-131.
    Dunn, O. J. (1964). Multiple Comparisons Using Rank Sums. Technometrics, 6(3), 241-252.
    Hart, K. M., Schofield, P. J., & Gregoire, D. R. (2012). Experimentally derived salinity tolerance of hatchling Burmese pythons (Python molurus bivittatus) from the Everglades, Florida (USA). Journal of Experimental Marine Biology and Ecology, 413, 56-59.
    Harvey, D. S., & Weatherhead, P. J. (2006). A test of the hierarchical model of habitat selection using eastern massasauga rattlesnakes (Sistrurus c. catenatus). Biological Conservation, 130(2), 206-216.
    Heard, G. W., Black, D., & Robertson, P. (2004). Habitat use by the inland carpet python (Morelia spilota metcalfei: Pythonidae): Seasonal relationships with habitat structure and prey distribution in a rural landscape. Austral Ecology, 29, 446-460.
    Huey, R. B. (1982). Temperature, physiology and the ecology of reptiles. In C. Gans & F. H. Pough (Eds.), Biology of the reptilia, Ecology and Behaviour (Vol. 12). London: Academic Press.
    Huey, R. B., & Kingsolver, J. G. (1989). Evolution of thermal sensitivity of ectotherm performance. Trends in Ecology & Evolution 4, 131-135.
    Hutchison, V. H., Dowling, H. G., & Vinegar, A. (1966). Thermoregulation in a Brooding Female Indian Python, Python molurus bivittatus. Science, 151, 694-695.
    Jacobs, H. J., Auliya, M., & Böhme, W. (2009). Zur Taxonomie des Dunklen Tiger pythons, Python molurus bivittatus KUHL, 1820, speziell der Population von Sulawesi. Sauria, 31(3), 5-16.
    Lavoie, C., Donlan, C. J., Campbell, K., Cruz, F., & Carrion, G. V. (2006). Geographic tools for eradication programs of insular non-native mammals. Biological Invasions, 9(2), 139-148.
    Lemmon, P. E. (1957). A new instrument for measuring forest overstory density. Journal of Forestry, 55(9), 667-668.
    Macartney, J. M., Gregory, P. T., & Larsen, K. W. (1988). A tabular survey of data on movements and home ranges of snakes. Journal of Herpetology, 22(1), 61-73.
    Mazzotti, F. J., Cherkiss, M. S., Hart, K. M., Snow, R. W., Rochford, M. R., Dorcas, M. E., & Reed, R. N. (2011). Cold-induced mortality of invasive Burmese pythons in south Florida. Biological Invasions, 13(1), 143-151.
    Mohr, C. O. (1947). Table of equivalent populations of North American small mammals. American Midland Naturalist, 37, 223-249.
    Oh, D. H., Moteki, S., Nakanish, N., & Izawa, M. (2010). Effects of human activities on home range size and habitat use of the Tsushima leopard cat Prionailurus bengalensis euptilurus in a suburban area on the Tsushima Islands, Japan. Journal of Ecology and Field Biology, 33(1), 3-13.
    Pearson, D., Shine, R., & Williams, A. (2005). Spatial ecology of a threatened python (Morelia spilota imbricata) and the effects of anthropogenic habitat change. Austral Ecology, 30, 261-274.
    Peterson, C. R., Gibson, R. A., & Dorcas, M. E. (1993). Snake thermal ecology: the causes and consequences of body temperature variation. In R. A. Seigel & J. T. Collins (Eds.), Snakes: ecology and behavior. Caldwell: The Blackburn.
    Pyron, R. A., Burbrink, F. T., & Guiher, T. J. (2008). Claims of potential expansion throughout the U.S. by invasive python species are contradicted by ecological niche models. PLoS One, 3(8), e2931.
    Rainbolt, R. E., & Coblentz, B. E. (1999). Restoration of insular ecosystems: control of feral goats on Aldabra Atoll, Republic of Seychelles. Biological Invasions, 1, 363-375.
    Reed, R. N., Hart, K. M., Rodda, G. H., Mazzotti, F. J., Snow, R. W., Cherkiss, M., Rozar, R., & Goetz, S. (2011). A field test of attractant traps for invasive Burmese pythons (Python molurus bivittatus) in southern Florida. Wildlife Research, 38, 114-121.
    Rodda, G. H., Jarnevich, C. S., & Reed, R. N. (2009). What parts of the US mainland are climatically suitable for invasive alien pythons spreading from Everglades National Park? Biological Invasions, 11(2), 241-252.
    Rodda, G. H., Jarnevich, C. S., & Reed, R. N. (2011). Challenges in identifying sites climatically matched to the native ranges of animal invaders. PLoS One, 6(2), e14670.
    Row, J. R., & Blouin-Demers, G. (2006). Thermal quality influences effectiveness of thermoregulation, habitat use, and behaviour in milk snakes. Oecologia, 148(1), 1-11.
    Secor, S. M., & White, S. E. (2010). Prioritizing blood flow: cardiovascular performance in response to the competing demands of locomotion and digestion for the Burmese python, Python molurus. J Exp Biol, 213(1), 78-88.
    Shine, R., Ambariyanto, Harlow, P. S., & Mumpuni. (1999). Reticulated pythons in Sumatra biology, harvesting and sustainability. Biological Conservation, 87, 349-357.
    Shine, R., & Fitzgerald, M. (1996). Large snakes in a mosaic rural landscape: theecology of carpet pythons Morelia spilota (Serpentes: Pythonidae) in coastal eastern Australia. Biological Conservation, 76, 113-122.
    Slip, D. J., & Shine, R. (1988a). Habitat Use, movements and activity patterns of free-ranging diamond pythons, Morelia spilota spilota (Serpentes : Boidae): a Radio telemetric Study. Australian wildlife research, 15, 515-531.
    Slip, D. J., & Shine, R. (1988b). Thermoregulation of free-ranging diamond pythons, Morelia spilota (Serpentes, Boidae). Copeia, 4, 984-995.
    Snow, R. W., Krysko, K. L., Enge, K. M., & Oberhofer, L. (2006).Introduced populations of Boa constrictor (Boidae) and Python molurus bivittatus (Pythonidae) in southern Florida. In R. W. Henderson & R. Powell (Eds.), Biology of the boas and pythons. Eagle Mountain, USA: Eagle Mountain Publishing.
    Snow, R. W., Wolf, A. J., Greeves, B. W., Cherkiss, M. S., Hill, R., & Mazzotti, F. J. (2010). Thermoregulation by a brooding Burmese python (Python molurus bivittatus) in Florida. Southeastern Naturalist, 9(2), 403-405.
    Stuart, B., Nguyen, T. Q., Thy, N., Grismer, L., Chan-Ard, T., Iskandar, D., Golynsky, E., Lau, M. W. N. (2012). Python bivittatus. IUCN 2012. IUCN Red List of Threatened Species, Version 2012.2.
    Wang, T., Zarr, M., Arvedsen, S., Vedel-Smith, C., & Overgaard, J. (2003). Effects of temperature on the metabolic response to feeding in Python molurus. Comparative Biochemistry and Physiology, 133, 519-527.
    Webb, J. K., & Shine, R. (1997). A field study of spatial ecology and movements of a threatened snake species, Hoplocephalus bungaroides. Biological Conservation, 82, 203-217.
    Willson, J. D., Dorcas, M. E., & Snow, R. W. (2010).Identifying plausible scenarios for the establishment of invasive Burmese pythons (Python molurus) in Southern Florida. Biological Invasions, 13(7), 1493-1504.
    Wund, M. A., Torocco, M. E., Zappalorti, R. T., & Reinert, H. K. (2007). Activity ranges and habitat use of Lampropeltis getula getula (Eastern Kingsnakes). Northeastern Naturalist, 14(3), 343-360.
    Zhao, E. M. (1998). China red data book of endangered animals–Amphibia and Reptilia. Beijing: Science Press (in Chinese).
    Zhao, E. M., Huang, M. H., &Zong, Y. (1998). Fauna Sinica, Reptilia, Squamata, Serpentes (Vol. 3). Beijing: Science Press (in Chinese).

    下載圖示
    QR CODE