簡易檢索 / 詳目顯示

研究生: 林宏展
論文名稱: 水熱法沉積PZT壓電薄膜應用於微致動器之開發
Deposited PZT film for microactuators using a hydrothermal method
指導教授: 楊啟榮
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 95
中文關鍵詞: 鋯鈦酸鉛薄膜水熱法壓電微致動器
論文種類: 學術論文
相關次數: 點閱:283下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統之陶瓷壓電材料鋯鈦酸鉛(PZT)薄膜,必須使用射頻磁控濺鍍法,或是以溶膠-凝膠法(sol-gel)旋塗後,再經由高溫燒結(650 C-700 C)而成,其生產之製程設備昂貴、薄膜結構製程複雜或經高溫燒結會使微元件受到破壞等缺點。因此,必須發展低溫製程之鋯鈦酸鉛薄膜沉積,以實現低成本微元件之開發。水熱合成法是將化學溶液放置在密閉容器中,加熱至120 ~ 200 C使容器內部達到飽和蒸汽壓力,藉著高溫高壓之環境析出所需之物質。由於水熱法擁有低製程溫度與製造成本,且容易製作厚膜,故本研究使用水熱法來沉積鋯鈦酸鉛薄膜,並且利用此薄膜沉積技術製作壓電式微致動器。
    本研究在探討鈦金屬層對於水熱法沉積之特性,利用不同之鈦金屬層厚度觀察其沉積情形;再者,透過低溫之基板前熱處理方式,改善薄膜之附著性;最後嘗試著控制成核及晶體成長之沉積機制改善薄膜之密度。研究結果證實,鈦金屬層於水熱法中是當作沉積之起始層,且鈦金屬層會在開始沉積時提供反應所需之鈦離子,增加鈦金屬層厚度可以加快薄膜沉積速率。本研究成功在1 m之鈦金屬層輔助下,使鋯鈦酸鉛薄膜之沉積速度達到6.20 m / 24 hr,但是鈦金屬層超過1 m後,對於沉積速率並無太大的影響。本研究利用200 C持溫一小時之基板前熱處理條件下,有效的改善鋯鈦酸鉛薄膜之附著性。本研究以提高水熱溶液之反應物濃度,控制薄膜在成核機制下進行沉積之方式,製作出密度為 4.402  103 kg / m3之薄膜。
    本研究預期利用發展出之鋯鈦酸鉛薄膜沉積方式,製作懸臂樑壓電微致動器,但遇到矽基材表面之氮化矽覆蓋不緻密,導致矽基材受到KOH攻擊之問題,目前仍致力於保護矽基材之方式進行研究。

    Traditional deposition of ceramic piezoelectric lead zirconate titanate (PZT) thin film was used RF magnetron sputtering method, or sol-gel method spin-coating before sintered at high temperature (650 C  700 C), it has some shortcomings, those are: process equipment expensive, process complicated and damage structure by the high-temperature sintering process. Therefore, it is necessary to develop low-temperature process for PZT thin film deposition.
    Hydrothermal method is to synthesize requirements substance during high temperature and high pressure environmental. The cost and temperature of the method is rather low. In this study, we deposit PZT thin films by hydrothermal method, and fabricate piezoelectric microactuator using this technology.
    The purpose of this study was using different thickness of the titanium layer to investigate the characteristics of titanium layer for hydrothermal deposition. Furthermore, it is to improve the adhesion of PZT films by pre-heat treatment of substrate at low temperature. Finally try to control nucleation and crystal growth process of deposition to improve the density. We developed a high deposition rate which was 6.20 m / 24 hr on nickel substrate with Ti layer of 1 m. In this study, we improved the adhesion of PZT film by pre-heat treatment of 200 C temperature of one hour. We improved the density of the PZT film to 4.403  103 kg / m3 by controling the concentration of hydrothermal solution.

    摘要 I 總目錄 III 圖目錄 V 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 壓電材料分類 2 1.3 壓電材料之特性 3 1.3.1 壓電效應 3 1.3.2 焦電效應 4 1.3.3 鐵電效應 4 1.4 研究動機 5 第二章 文獻回顧 11 2.1 壓電材料之特性研究 11 2.1.1 壓電材料的基本參數 11 2.1.2 鋯鈦酸鉛之結構 13 2.2 製備鋯鈦酸鉛薄膜之方式 13 2.2.1 MOCVD法 14 2.2.2 濺鍍/蒸鍍法 15 2.2.3 溶膠-凝膠法 16 2.2.4 水熱合成法 17 第三章 研究設計與實驗方法 31 3.1 研究設計 31 3.1.1 水熱法實驗步驟設計 31 3.1.2 結構設計 32 3.2 實驗規劃與方法 33 3.3 實驗設備 36 3.4 材料分析儀器 37 3.4.1 X-ray繞射儀 37 3.4.2 EDS分析 38 第四章 實驗結果與討論 61 4.1 水熱法沉積鋯鈦酸鉛薄膜之特性探討 61 4.1.1 水熱法沉積於鈦基板之特性研究 61 4.1.1.1 基板前熱處理之影響 61 4.1.1.2 不同水熱溶液濃度之影響 62 4.1.2 水熱法沉積於鈦金屬層之特性研究 62 4.1.2.1 鈦金屬層對水熱沉積特性之影響 63 4.1.2.2 鈦金屬層對水熱沉積速率之影響 64 4.1.2.3 改善水熱沉積鋯鈦酸鉛薄膜密度之研究 65 4.2 水熱法沉積鋯鈦酸鉛薄膜之特性分析 66 4.2.1 X-ray繞射儀分析 66 4.3 複合式微致動器之製作與測試 66 4.4 未來工作 66 第五章 結論 88 5.1 結論 88 5.2 未來展望 89 參考文獻 90

    1. 楊啟榮等人, "微機電系統技術與應用", 精密儀器發展中心, 第四章, pp. 142 (2003).
    2. R. G. Kepler and R. A. Anderson, "Ferroelectricity in polyvinylidene fluoride", Journal of applied physics, Vol. 49, No. 3, pp. 1232-1235 (1978).
    3. P. Alan, "Pyroelectrics for smart munitions", Reprinted from sensors, April (1988).
    4. Z. Ounaies, J. S. Harrison and R. J. Silcox, "Piezoelectric materials for sensor and actuator applications at NASA LaRC", Quarterly newsletter of the institute for computer applications in science and engineering, Vol. 8, No. 2, pp. 12-23 (1999).
    5. R. F. M. Marcal, J. L. Kovaleski and A. A. Suzim, "A poly vinylidene fluoride (PVF2) piezoelectric film based accelerometer", IEEE instrumentation and measurement technology conference, Vol. 19-21, pp. 908-913 (1997).
    6. N. Fujitsuka, J. Sakata, Y. Miyachi, K. Mizuno, K. Ohtsuka and Y. Taga, "Monolithic pyroelectric infrared image sensor using PVDF thin film", IEEE international conference on solidstate sensors and actuators, pp. 1237-1240 (1997).
    7. B. Ploss, P. Lehmann, H. Schopf, T. Lessle, S. Bauer and U. Thiemann, "Integrated pyroelectric detector arrays with the sensor material PVDF", Ferroelectrics, Vol. 109, pp. 223-228 (1990).
    8. S. Bauer, S. B. Gogonea, W. Becker, R. Fettig, B. Ploss and W. Ruppel, "Thin metal films as absorbers for infrared sensors", Sensors and actuators A, Vol. 37-38, pp. 497-501 (1993).
    9. D. Cathignol and A. Thomas, "PVDF hydrophone with liquid electrodes for shock wave measurements", IEEE ultrasonics symposium , Vol. 1, pp. 341-344 (1990).
    10. G. W. Taylor, J. R. Burns, S. M. Kammann, W. B. Powers and T. R. Welsh, "The energy harvesting eel: a small subsurface ocean/river power generator", IEEE journal of oceanic engineering, Vol. 26, No. 4, pp. 539-547 (2001).
    11. M. E. Motamedi, "Acoustic sensor technology", IEEE microwave symposium digest, Vol. 1, pp. 521-524 (1994).
    12. P. D. Wilcox, P. Cawley and M. J. S. Lowe, "Acoustic fields from PVDF interdigital transducers", IEEE proceedings-science measurement and technology, Vol. 145, No. 5, pp. 250-259 (1998).
    13. M. Lebedev and J. Akedo, "Effect of thickness on the piezoelectric properties of lead zirconate titanate films fabricated by aerosol deposition method", Japanese journal of applied physics, Vol. 41, pp. 6669-6673 (2002).
    14. A. Mahrane and M. D. Rouhani, "P(VDF-TrFE) copolymer sensor for passive IR detection in automotives", Sensors and actuators A, Vol. 46-47, pp. 399-402 (1995).
    15. Y. Daben, "Composite piezoelectric film made from PVDF polymer and PCM-PZT ferroelectric ceramics", Ferroelectrics, Vol. 101, pp. 291-296 (1990).
    16. D. Sinha, N. Shroff and P. K. Pillai, "Dc conduction mechanism in the composite system of lead zirconate titanate and polyvinylidene fluoride", Ferroelectrics, Vol. 103, pp. 49-56 (1990).
    17. D. Sinha and P. K. C. Pillai, "The conductivity behavior in lead zirconate titanate polyvinylidene fluoride composites", Journal of applied physics, Vol. 64, No. 5, pp. 2571-2574 (1988).
    18. P. Ueberschlag, "PVDF piezoelectric polymer", Sensor review, Vol. 21, No. 2, pp. 118-125 (2001).
    19. M. Okuyama, "Microsensors and microactuators using ferroelectric thin films", IEEE International symposium on micromechatronics and human science, pp. 29-34 (1998).
    20. T. Evans, S. Sun, J. Ruffner and P. Clem, "Proceedings of ISAF 2000: aerogel isolated pyroelectric IR detector", IEEE Applications of Ferroelectrics, 12th IEEE International Symposium, Vol. 1, pp. 221-226 (2001).
    21. M. Shimizu, M. Okaniwa, H. Fujisawa and H. Niu, "Ferroelectric properties of Pb(Zr,Ti)O3 thin films prepared by low-temperature MOCVD using PbTiO3 seeds" , Journal of the european ceramic society, Vol. 24, pp. 1625-1628 (2004).
    22. P. Verardi, M. Dinescu and F. Craciun, "Pulsed laser deposition and characterization of PZT thin films", Applied surface science, Vol. 154-155, pp. 514-518 (2000).
    23. E. Cattan, T. Haccart, G. Velu, D. Remiens, C. Bergaud and L. Nicu, "Piezoelectric properties of PZT films for microcantilever", Sensors and actuators A, Vol. 74, pp. 60-64 (1990).
    24. W. L. Chang and J. L. He, "Influence of the lead source materials on microstructure and ferroelectric properties of PZT films sputter-deposited using lead and lead oxide", Journal of electroceramics, Vol. 13, pp. 35-39 (2004).
    25. C. Lee, T. Itoh, G. Sasaki and T. Suga, "Sol-gel derived PZT force sensor for scanning force microscopy", Materials chemistry and physics, Vol. 44, pp. 25-29 (1996).
    26. H. Kueppers, T. Leuerer, U. Schnakenberg, W. Mokwa, M. Hoffmann, T. Schneller, U. Boettger and R. Waser, "PZT thin films for piezoelectric microactuator applications", Sensors and actuators A, Vol. 97-98, pp. 680-684 (2002).
    27. J. Cheng and Z. Meng, "Thickness-dependent microstructures and electrical properties of PZT films derived from sol-gel process", Thin solid films, Vol. 385, pp. 5-10 (2001).
    28. K. Shimomura, T. Tsurumi, T. Ohba and M. Daimon, "Preparation of lead zirconate titanate thin film by hydrothermal method", Japanese journal of applied physics, Vol. 30 No. 9B, pp. 2174-2177 (1991).
    29. T. Fukuda, H. Sato, F. Arai, H. Iwata and K. Itoigawa, "Parallel beam micro sensor / actuator unit using PZT thin films and its application examples", IEEE international conference on robotics & automation leuven, pp. 1498-1503 (1998).
    30. Y. Ohba, M. Miyauchi, E. Sakai and M. Daimon, "Hydrothermal syntheses of lead zirconate titanate thin films fabricated by a continuous-supply autoclave", Japanese journal of applied physics, Vol. 34, pp. 5216-5219 (1995).
    31. T. Morita, T. Kanda, Y. Yamagata, M. Kurosawa and T. Higuchi, "Single process to deposit lead zirconate titanate (PZT) thin film by hydrothermal method", Japanese journal of applied physics, Vol. 36, pp. 2998-2999 (1997).
    32. T. Morita and M. K. Kurosawa, "A cylindrical micro ultrasonic motor using PZT thin film deposited by single process hydrothermal method", IEEE transactions on ultrasonics, ferroelectrics, and frequency control, Vol. 45, No. 5, pp. 1178-1187 (1998).
    33. T. Morita, M. K. Kurosawa and T. Higuchi, "Cylindrical micro ultrasonic motor utilizing bulk lead zirconate titanate (PZT)", Japanese journal of applied physics, Vol. 38, pp. 3347-3350 (1999).
    34. M. K. Kurosawa, H. Yasui, T. Kanda and T. Higuchi, "Performance of hydrothermal PZT film on high intensity operation", IEEE micro electro mechanical systems, pp. 56-61 (2000).
    35. T. Kanda, M. K. Kurosawa, H. Yasui and T. Higuchi, "Performance of hydrothermal PZT film on high intensity operation", Sensors and actuators A, Vol. 89, pp. 16-21 (2001).
    36. G. Kwon, F. Arai, T. Fukuda, K. Itoigawa and Y. Tsukahara, "Micro touch sensor array made by hydrothermal method", IEEE international symposium on micromechatronics and human science, pp. 81-86 (2001).
    37. L. Du, F. Arai, T. Fukuda, G. Kwon, K. Itoigawa and Y. Tukahara, "Analysis of driving ability of bimorph-type bending actuators synthesized by hydrothermal method", IEEE international symposium on micromechatronics and human science, pp. 45-50 (2001).

    38. T. Kanda, T. Morita, M. K. Kurosawa and T. Higuchi, "Estimation of resolution and contact force of a longitudinally vibrating touch probe sensor using lead zirconate titanate (PZT) thin-film vibrator", Japanese journal of applied physics, Vol. 40, pp. 3646-3651 (2001).
    39. G. Kwon, F. Arai, T. Fukuda, K. Itoigawa and Y. Thukahara, "Dome shaped touch sensor using PZT thin film made by hydrothermal method", IEEE international conference on robotics & automation seoul, Vol. 21-26, pp. 577-582 (2001).
    40. L. Du, G. Kwon, F. Arai, T. Fukuda, K. Itoigawa and Y. Tukahara, "Structure design of micro touch sensor array", Sensors and actuators A, Vol. 107, pp. 7-13 (2003).
    41. S. Euphrasie, S. D. Minaud and P. Pernod, "Lead zirconate titanate (PZT) films deposited by hydrothermal method", Solid state sciences, Vol. 5, pp. 1499-1504 (2003).
    42. S. Euphrasie, S. D. Minaud and P. Pernod, "PZT films deposited by hydrothermal method and characterizations", Materials science and engineering. Vol. B104, pp. 180-184 (2003).
    43. M. Ishikawa, M. Kurosawa, N. Katsura and S. Takeuchi, "PZT thick films deposited by improved hydrothermal method for thickness mode ultrasonic transducer", Materials research society, Vol. 784, C11.27.1-5 (2004).
    44. M. Ishikawa, M. K. Kurosawa, A. Endoh and S. Takeuchi, "Lead zirconate tiatnate thick-film ultrasonic transducer for 1 to 20 MHz frequency bands fabricated by hydrothermal polycrystal growth", Japanese journal of applied physics, Vol. 44, No. 6B, pp. 4342-4346 (2005).
    45. T. Morita and Y. Cho, "A hydrothermal deposited epitaxial lead titanate thin film on strontium ruthenium oxide bottom electrode", Applied physics letters, Vol. 85, No. 12, pp. 2331-2333 (2004).
    46. W. W. Jung, H. C. Lee, W. S. Ahn, S. H. Ahn and S. K. Choi, "Switchable single c-domain formation in a heteroepitaxial PbTiO3 thin film on a (001) Nb-SrTiO3 substrate fabricated by means of hydrothermal epitaxy", Applied physics letters, Vol. 86, pp. 202901-1-3 (2005).

    無法下載圖示 本全文未授權公開
    QR CODE