研究生: |
陳彥樺 Chen, Yan-Hua |
---|---|
論文名稱: |
應用LOADEST評估氣候變遷情境下河川輸出溶解態有機碳之變化 ── 以翡翠水庫上游集水區為例 Applying LOADEST to assess changes in dissolved organic carbon output from rivers under climate change scenarios ── An example of upstream catchment of Feitsui Reservoir |
指導教授: | 李宗祐 |
學位類別: |
碩士 Master |
系所名稱: |
地理學系 Department of Geography |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 溶解態有機碳 、Loadest 、SWAT模式 、氣候變遷 、高山小河川 |
英文關鍵詞: | Dissolved Organic Carbon, Loadset, SWAT, Climate Change, Alpine Streams |
DOI URL: | http://doi.org/10.6345/NTNU202001654 |
論文種類: | 學術論文 |
相關次數: | 點閱:141 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣為亞熱帶地區多高山的小島國家,過去研究顯示,台灣的高山小河川在陸域有機碳輸出至海洋的過程中扮演重要角色,大部分研究的重點著重顆粒態有機碳輸出而鮮少討論溶解態有機碳輸出的重要性,然而,單位面積溶解態有機碳的年產出量高達每公頃30公斤,全球排名前30%。故本研究以坪林集水區為例,利用過去近十年之溶解態有機碳觀測資料,透過汙染物負載量計算模式Loadest建立溶解態有機碳輸出之統計回歸模型,並進而推估5個GCM在RCP8.5氣候變遷情境下,於短期、中期一、中期二與長期,溶解態有機碳輸出之變化。
研究成果顯示,氣候變遷情境下,短期、中期一、中期二與長期下,多數模式顯示,年總溶解態有機碳輸出量並無顯著變化;然而冬、春兩季溶解態有機碳輸出量有在短期、中期一、中期二與長期皆有減少,且最多可減少達30%的趨勢,長期將降低達37%;夏季則隨時間其增加在CSIRO模式下有增加趨勢。整體而言,在氣候變遷情境下,多數模式皆呈現減少之趨勢,即意味,未來,冬、春兩季水體內溶解態有機碳輸出將大幅減少,而夏、秋兩季則隨情境不同,輸出差異越大,但大抵呈現減少之趨勢。
Taiwan is a subtropical mountainous island country. The previous studies indicate that alpine streams in Taiwan play an important role in the process of exporting terrestrial organic carbon into the ocean. Most studies emphasize on the importance of particulate organic carbon but rarely discuss on the importance of dissolved organic carbon. However, the annual produce of dissolved organic carbon per unit area in Taiwan is as high as 30 kilograms per hectare, ranking at the 30% highest globally. Therefore, this study chooses Pinglin watershed as an example study area, and utilizes the pollution load calculation model, Loadest, to build a statistical regression model of dissolved organic carbon export from observation data in the near ten years. The data are further used to predict the difference of near-term, middle-term phase 1, middle-term phase 2 and long term dissolved organic carbon export of 5 GCMs under the climate change context of RCP 8.5.
The results show that most models indicate no significant change in annual dissolved organic carbon export in near-term, middle-term phase 1, middle-term phase 2 and long-term time frame under climate change context. However, the dissolved organic carbon export in both winter and spring season declines in the near-term, middle-term phase 1, middle-term phase 2 and long-term timeframe. The decline of the trend can be as much as 30% and is expected to decline to 37% in long-term. The dissolved organic carbon export in summer shows an inclining trend in CSIRO model as time goes by. Overall, most model shows declination in trends under climate change context, meaning that dissolved organic carbon export in winter and spring will decline drastically in the future while that in summer and autumn will have an overall declining trend but differ greatly depending on the contexts.
Addis, M. F., Tedde, V., Puggioni, G. M. G., Pisanu, S., Casula, A., Locatelli, C., ... & Uzzau, S. (2016). Evaluation of milk cathelicidin for detection of bovine mastitis. Journal of dairy science, 99(10), 8250-8258.
Akaike, H. (1974). A new look at the statistical model identification, IEEE Transactions on Automatic Control, 19(6),716-723.
Bao, H., Lee, T. Y., Huang, J. C., Feng, X., Dai, M., & Kao, S. J. (2015). Importance of Oceanian small mountainous rivers (SMRs) in global land-to-ocean output of lignin and modern biospheric carbon. Scientific reports, 5(1), 1-10.
Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A., & Tranvik, L. J. (2009). The boundless carbon cycle. Nature Geoscience, 2(9), 598.
Bishop, K. H., Laudon, H., & Köhler, S. (2000). Separating the natural and anthropogenic components of spring flood pH decline: A method for areas that are not chronically acidified. Water Resources Research, 36(7), 1873-1884.
Cavanaugh, J. E., & Neath, A. A. (2019). The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. Wiley Interdisciplinary Reviews: Computational Statistics, 11(3), e1460.
Das, S. K. (2016). Management of Agricultural Non-point Source Pollution–A Case Study on Yarra River (Doctoral dissertation, Victoria University).
Dillon, P. J., & Molot, L. A. (1997). Effect of landscape form on export of dissolved organic carbon, iron, and phosphorus from forested stream catchments. Water Resources Research, 33(11), 2591-2600.
Echambadi, R., & Hess, J. D. (2007). Mean-centering does not alleviate collinearity problems in moderated multiple regression models. Marketing Science, 26(3), 438-445.
Evans, C. D., Chapman, P. J., Clark, J. M., Monteith, D. T., & Cresser, M. S. (2006). Alternative explanations for rising dissolved organic carbon export from organic soils. Global change biology, 12(11), 2044-2053.
Ficklin, D. L., Luo, Y., Luedeling, E., & Zhang, M. (2009). Climate change sensitivity assessment of a highly agricultural watershed using SWAT. Journal of Hydrology, 374(1-2), 16-29.
Findlay, S. E. (2005). Increased carbon transport in the Hudson River: unexpected consequence of nitrogen deposition?. Frontiers in Ecology and the Environment, 3(3), 133-137.
Freeman, C., Evans, C. D., Monteith, D. T., Reynolds, B., & Fenner, N. (2001). Export of organic carbon from peat soils. Nature, 412(6849), 785-785.
Garnett, M. H., Ineson, P., & Stevenson, A. C. (2000). Effects of burning and grazing on carbon sequestration in a Pennine blanket bog, UK. The Holocene, 10(6), 729-736.
Huang, J.C., Lee, T.Y., Lee, J.Y., 2014. Observed Magnified Runoff Response to Rainfall Intensification under Global Warming, Environmental Research Letters, 9: 034008, DOI: 10.1088/1748-9326/9/3/034008.
Huntington, T. G., Balch, W. M., Aiken, G. R., Sheffield, J., Luo, L., Roesler, C. S., & Camill, P. (2016). Climate change and dissolved organic carbon export to the Gulf of Maine. Journal of Geophysical Research: Biogeosciences, 121(10), 2700-2716.
Jha, B. (2013). Rating Curve Development and Multivariate Statistical Analyses of Stream Water Quality in Greensboro, North Carolina (Doctoral dissertation, North Carolina Agricultural and Technical State University).
Jha, B., & Jha, M. K. (2013). Rating curve estimation of surface water quality data using LOADEST. Journal of Environmental Protection Vol.4 No.8(2013)
Kortelainen, P., & Saukkonen, S. (1998). Leaching of nutrients, organic carbon and iron from Finnish forestry land. In Biogeochemical Investigations at Watershed, Landscape, and Regional Scales (pp. 239-250). Springer, Dordrecht.
Lee, T.Y., Huang, J.C., Lee, J.Y., Jien, S.H., Zehetner, F., Kao, S.J.,( 2015). Magnified Sediment Export of Small Mountainous Rivers in Taiwan: Chain Reactions from Increased Rainfall Intensity under Global Warming. PLoS ONE 10(9): e0138283. doi:10.1371/journal.pone.0138283
Lee, T. Y., Lee, L. C., Huang Jr, C., Jien, S. H., Hein, T., Zehetner, F., ... & Shiah, F. K. (2017). The dynamics and export of dissolved organic carbon from subtropical small mountainous rivers during typhoon and non-typhoon periods. Biogeosciences Discussions, 1-34.
Lee, L. C., Hsu, T. C., Lee, T. Y., Shih, Y. T., Lin, C. Y., Jien, S. H., ... & Huang, J. C. (2019). Unusual roles of discharge, slope and SOC in DOC transport in small mountainous rivers, Taiwan. Scientific reports, 9(1), 1-9.
Lin, C. Y., & Tung, C. P. (2017). Procedure for selecting GCM datasets for climate risk assessment. Terrestrial, Atmospheric & Oceanic Sciences, 28(1).
Mimikou, M. A., Baltas, E., Varanou, E., & Pantazis, K. (2000). Regional impacts of climate change on water resources quantity and quality indicators. Journal of Hydrology, 234(1-2), 95-109.
Monteith, D. T., Stoddard, J. L., Evans, C. D., De Wit, H. A., Forsius, M., Høgåsen, T., ... & Keller, B. (2007). Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450(7169), 537
OECD/European Commission (2020), Cities in the World: A New Perspective on Urbanisation, OECD Urban Studies, OECD Publishing, Paris, https://doi.org/10.1787/d0efcbda-en.
Oni, S. K., Futter, M. N., Bishop, K., Kohler, S. J., Ottosson-Lofvenius, M., & Laudon, H. (2013). Long-term patterns in dissolved organic carbon, major elements and trace metals in boreal headwater catchments: trends, mechanisms and heterogeneity. Biogeosciences, 10(4), 2315-2330.
Pohlert, T., Huisman, J. A., Breuer, L., & Frede, H. G. (2005). Modelling of point and non-point source pollution of nitrate with SWAT in the river Dill, Germany. Advances in Geosciences, European Geosciences Union, 2005, 5, pp.7-12.
Räike, A., Kortelainen, P., Mattsson, T., & Thomas, D. N. (2016). Long-term trends (1975–2014) in the concentrations and export of carbon from Finnish rivers to the Baltic Sea: organic and inorganic components compared. Aquatic Sciences, 78(3), 505-523.
Ravichandran, M. (2004). Interactions between mercury and dissolved organic matter––a review. Chemosphere, 55(3), 319-331.
Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., ... & Kortelainen, P. (2013). Global carbon dioxide emissions from inland waters. Nature, 503(7476), 355-359.
Santhi, C., Arnold, J. G., Williams, J. R., Dugas, W. A., Srinivasan, R., & Hauck, L. M. (2001). Validation of the swat model on a large rwer basin with point and nonpoint sources 1. JAWRA Journal of the American Water Resources Association, 37(5), 1169-1188.
Schlesinger, W. H. (2000). Carbon sequestration in soils: some cautions amidst optimism. Agriculture, Ecosystems & Environment, 82(1-3), 121-127.
Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., ... & Midgley, P. M. (2013). Climate change 2013: the physical science basis. Intergovernmental panel on climate change, working group I contribution to the IPCC fifth assessment report (AR5). New York.
Trenberth, K. E., & Shea, D. J. (2006). Atlantic hurricanes and natural variability in 2005. Geophysical Research Letters, 33(12).
Tung, C. P., & Haith, D. A. (1995). Global-warming effects on New York streamflows. Journal of Water Resources Planning and Management, 121(2), 216-225.
Tung, C. P., & Lin, C. Y. (2008). The challenge and response for climate change. Science Development, 424, 28-33.
Tung, C., Liu, T., Chen, S., Ke, K., & Li, M. (2014). Carrying capacity and sustainability appraisals on regional water supply systems under climate change. British Journal of Environment and Climate Change, 4(1), 27-44.
Walsh, K., Allan, R., Jones, R., Pittock, B., Suppiah, R., & Whetton, P. (2002). Climate change in Queensland under enhanced greenhouse conditions. Melbourne, Australia: CSIOR–Atmospheric Research.
Wickramaarachchi, T. N., Ishidaira, H., Magome, J., & Wijayaratna, N. (2014). Impacts of Future Flow Regime Alterations on Iron Load Occurrence in Gin River, Sri Lanka. 土木学会論文集 B1 (水工学), 70(4), I_127-I_132.
Wolf, R., Andersen, T., Hessen, D. O., & Hylland, K. (2017). The influence of dissolved organic carbon and ultraviolet radiation on the genomic integrity of Daphnia magna. Functional ecology, 31(4), 848-855.
Worrall, F., Harriman, R., Evans, C.D. et al. Trends in Dissolved Organic Carbon in UK Rivers and Lakes. Biogeochemistry 70, 369–402 (2004).
Winterdahl, M., Erlandsson, M., Futter, M. N., Weyhenmeyer, G. A., & Bishop, K. (2014). Intra‐annual variability of organic carbon concentrations in running waters: Drivers along a climatic gradient. Global biogeochemical cycles, 28(4), 451-464.
李克里(2013)。氣候變遷與土地利用變遷對集水區流量衝擊評估-以聖文森蒙特婁集水區為例。國立中央大學國際永續發展碩士在職專班碩士論文,桃園縣。 取自https://hdl.handle.net/11296/326w82
林其鋒(2014)。金門水庫水質變化及高有機性污染形態成因分析。國立臺灣大學環境工程研究所碩士論文,台北市。取自https://hdl.handle.net/11296/k67m66
林冠州(2017)。應用非點源汙染模式SWAT模擬翡翠水庫上游集水區流量及氮素之輸出與移動。國立臺灣師範大學地理學系碩士論文,台北市。 取自https://hdl.handle.net/11296/63tahg
柳中明。(2005)。氣候變遷、衝擊、因應與永續發展研究進展 2005(上)。國立臺灣大學全球變遷研究中心,台北。.
童慶斌、吳明進、張斐章、李明旭、柳文成、謝龍生。(2002)。氣候變化綱要公約國家通訊衝擊調適資料建置-氣候. 水文, 生態部分 (一)。行政院環境保護署專題研究計畫報告。
童慶斌、李明旭、葉欣誠、范正成(2006)。氣候變遷對災害防治衝擊調適與因應策略整合研究-子計畫: 水庫系統在變遷氣候中之脆弱度評估與支援決策技術發展 (I)。行政院國家科學委員會專題研究計畫成果報告。
鍾寧心(2010)。氣候變遷對營養鹽輸出量之早期預警指標─以翡翠水庫集水區為例。國立臺灣大學環境工程研究所碩士論文,台北市。取自https://hdl.handle.net/11296/fhdj6u
臺北市翡翠水庫管理局(無日期)。翡翠水庫操作管理。2020年8月24日。取自https://www.feitsui.gov.taipei/Default.aspx