簡易檢索 / 詳目顯示

研究生: 廖譽凱
Liao, Yu-Kai
論文名稱: 石榴石型全固態鋰離子電池界面改質
Interface Modification of Garnet-Type All-Solid-State Li-ion Battery
指導教授: 胡淑芬
Hu, Shu-Fen
口試委員: 劉佳兒
Liu, Chia-Erh
王復民
Wang, Fu-Ming
洪太峰
Hung, Tai-Feng
江佩勳
Jiang, Pei-Hsun
胡淑芬
Hu, Shu-Fen
口試日期: 2023/07/25
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 153
英文關鍵詞: Solid state Li-ion battery, Garnet, Alloy, Composite anode
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202301015
論文種類: 學術論文
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This study aims to apply various interface modifications to the anode of a solid-state battery. The study is divided into four sections, each using a different method of interface modification, including Pt sputtering, co-melting of Li and GaN, co-melting of Li and MAX-MXene followed by Pt modification, and finally spin-coating of CaCl2 on LLZTO followed by co-melting with Li. In the pursuit of cost reduction and interface modification, this research aims to discuss the materials for interface modification that are capable of forming an artificial SEI (Solid Electrolyte Interphase) layer and alloy layer. Additionally, to cater to future industrial applications, the study is dedicated to lowering research costs while selecting appropriate materials. Pt is initially chosen for its high stability, while GaN is selected to facilitate the formation of the alloy anode and artificial SEI layer as an interface transmission layer, blocking electron transport. GaN, being a third-generation semiconductor material with high popularity, has shown promising potential for application in solid-state batteries. Moreover, the application of Mxene involves the use of Ti nanoparticles to enhance the interface's Coulombic repulsion, thereby improving cycling stability and ion transport speed. Furthermore, a Li-C alloy is employed to stabilize the three-dimensional framework. Ultimately, combining the research experiences mentioned above, a low-cost CaCl2 anode is developed, resulting in the optimum interface impedance and overall minimal cost for Li-Ca-Cl solid-state batteries.
    The results of each method show a significant reduction in interface impedance, with the lowest impedance of 7 Ω cm2 achieved using the Li-Ca-Cl anode. Symmetric cells also show an increase in cycle life from 90 cycles to 3500 cycles using Li-Pt at a current density of 0.1 mA cm-2, and the full battery can operate for 100 cycles with a discharge capacity retention rate of 93.3% using Li-MXene-Pt. Additionally, the cost of the anode interface modification has been reduced from 983.0 USD g-1 for Pt to 0.7 USD g-1 for CaCl2. Therefore, the ultimate goal of this study is to enhance the wettability of the anode in a solid-state battery at the lowest cost possible and further improve the efficiency of the entire battery, laying the foundation for future application-oriented developments in solid-state batteries.
    The future of solid-state batteries lies in the development of high-performance, low-cost anode materials like CaCl2 and ensuring robust interface design for both anode and cathode. The use of Pt and GaN as interface modifiers has shown great promise, but further research is needed to address the cathode's interface challenges. By adopting non-invasive interface research approaches, we can gain a deeper understanding of the underlying processes and unlock the full potential of solid-state batteries for various industrial applications. Collaborative efforts from scholars in these areas will undoubtedly accelerate the advancement of solid-state battery technology.

    Abstract i Acknowledgements iii Contents iv Figure Contents viii Chapter 1. Introduction 1 1.1 The history of battery 2 1.2 Li-ion battery 7 1.3 The cathode material 8 1.3.1 Intercalation cathode 9 1.3.2 Conversion cathode 15 1.4 The anode material 18 1.4.1 Lithium anode 20 1.4.2 Silicon anode 21 1.4.3 LTO anode 22 1.4.4 Graphite anode 23 1.5 Solid electrolyte interphase (SEI) 25 1.6 Liquid electrolyte 26 1.7 Gel electrolyte 27 1.8 Solid-state electrolyte 28 1.9 Interfacial problem of garnet-type solid-state battery 36 1.10 Research motivation and purpose 41 Chapter 2. Experimental Approaches and Techniques 43 2.1 Chemicals and Materials 44 2.2 Material synthesis 45 2.2.1 LLZTO synthesis 45 2.3 Battery assembly 46 2.3.1 Cathode 46 2.3.2 Coin cell assembly 47 2.3.3 Interfacial layer process 48 2.3.4 Composite anode 52 2.4 Instruments for Characterization 53 2.4.1 X-ray diffraction; XRD 53 2.4.2 Scanning electron microscope; SEM 55 2.4.3 Focused ion beam, FIB 56 2.4.4 Transmission electron microscope; TEM 58 2.4.5 Electrical impedance spectroscopy; EIS 61 2.4.6 Arrhenius plot 62 2.4.7 Time-of-Flight Secondary Ion Mass Spectrometry; TOF-SIMS 63 2.4.8 Symmtery cell test 65 2.4.9 Full cell test 67 Chapter 3. The Li-Pt alloy 68 3.1 Research motivation and purpose 68 3.2 Alloying element selection 68 3.3 Experimental section 70 3.4 Result and discussion 74 3.5 Summary 87 Chapter 4. The Li-Ga-N interfacial compound 89 4.1 Research motivation and purpose 89 4.2 The compound material section 90 4.3 Experimental section 91 4.4 Result and discussion 93 4.5 Summary 108 Chapter 5. The Li-Mxene interfacial compound 110 5.1 Research motivation and purpose 110 5.3 Experimental section 111 5.4 Result and discussion 112 5.5 Synergistic effect with Pt 124 5.6 Summary 128 Chapter 6. The Li-Ca-Cl interfacial compound 130 6.1 Research motivation and purpose 130 6.2 The compound material section 130 6.3 Experimental section 131 6.4 Result and Discussion 132 6.5 Summary 141 Chapter 7. Conclusions 143 7.1 Research Conclusions 143 7.2 Future Outlook 144 References 146

    (1) Lin, B. and Tan, R.; Sustainable Development of China's Energy Intensive Industries: From the Aspect of Carbon Dioxide Emissions Reduction. Renew. Sust. Energ. Rev. 2017, 77, 386-394.
    (2) Heilbron, J. L.; GM Bose: The Prime Mover in the Invention of the Leyden Jar? Isis 1966, 57, 264-267.
    (3) de Andrade Martins, R.; Romagnosi and Volta's pile: Early difficulties in the interpretation of Voltaic electricity. Nuova Voltania: Studies on Volta and his Times 2001, 3, 81-102.
    (4) Hamm, A.; Krott, N.; Breibach, I.; Blindt, R. and Bosserhoff, A. K.; Efficient Transfection Method for Primary Cells. Tissue Eng. 2002, 8, 235-245.
    (5) Winter, M.; Barnett, B. and Xu, K.; Before Li Ion Batteries. Chem. Rev. 2018, 118, 11433-11456.
    (6) Liang, Y.; Zhao, C. Z.; Yuan, H.; Chen, Y.; Zhang, W.; Huang, J. Q.; Yu, D.; Liu, Y.; Titirici, M. M. and Chueh, Y. L.; A Review of Rechargeable Batteries for Portable Electronic Devices. InfoMat 2019, 1, 6-32.
    (7) Whittingham, M. S.; Electrical Energy Storage and Intercalation Chemistry. Science 1976, 192, 1126-1127.
    (8) Mizushima, K.; Jones, P.; Wiseman, P. and Goodenough, J. B.; LixCoO2 (0< x<-1): A New Cathode Material for Batteries of High Energy Density. Mater. Res. Bull. 1980, 15, 783-789.
    (9) Thackeray, M.; David, W.; Bruce, P. and Goodenough, J.; Lithium Insertion into Manganese Spinels. Mater. Res. Bull. 1983, 18, 461-472.
    (10) Manthiram, A. and Goodenough, J.; Lithium Insertion into Fe2(SO4)3 Frameworks. J. Power Sources 1989, 26, 403-408.
    (11) Padhi, A. K.; Nanjundaswamy, K. S. and Goodenough, J. B.; Phospho‐Olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc. 1997, 144, 1188-1194.
    (12) Nitta, N.; Wu, F.; Lee, J. T. and Yushin, G.; Li-ion Battery Materials: Present and Future. Mater. Today 2015, 18, 252-264.
    (13) Inglesfield, J.; A Method of Embedding. J. Phys. C: Solid State Phys. 1981, 14, 3795.
    (14) Daniel, C.; Mohanty, D.; Li, J. and Wood, D. L. In Cathode Materials Review, AIP Conf. Proc., American Institute of Physics: 2014; p 26-43.
    (15) Chakraborty, A.; Kunnikuruvan, S.; Dixit, M. and Major, D. T.; Review of Computational Studies of NCM Cathode Materials for Li‐ion Batteries. Isr. J. Chem. 2020, 60, 850-862.
    (16) BASF the Chemical Company; BASF Aerospace Materials: HEDTM NCMs. 2016.
    (17) Wickham, D. and Croft, W.; Crystallographic and Magnetic Properties of Several Spinels Containing Trivalent ja-1044 Manganese. J. Phys. Chem. Solids 1958, 7, 351-360.
    (18) Zhang, T.; Li, D.; Tao, Z. and Chen, J.; Understanding Electrode Materials of Rechargeable Lithium Batteries Via DFT Calculations. Prog. Nat. Sci. 2013, 23, 256-272.
    (19) Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Zaccaria, R. P. and Capiglia, C.; Review on Recent Progress of Nanostructured Anode Materials for Li-Ion Batteries. J. Power Sources 2014, 257, 421-443.
    (20) Mauger, A.; Armand, M.; Julien, C. and Zaghib, K.; Challenges and Issues Facing Lithium Metal for Solid-State Rechargeable Batteries. J. Power Sources 2017, 353, 333-342.
    (21) Ma, D.; Cao, Z. and Hu, A.; Si-Based Anode Materials for Li-Ion Batteries: A Mini Review. Nanomicro Lett. 2014, 6, 347-358.
    (22) Han, C.; He, Y.-B.; Liu, M.; Li, B.; Yang, Q.-H.; Wong, C.-P. and Kang, F.; A Review of Gassing Behavior in Li4Ti5O12-Based Lithium Ion Batteries. J. Mater. Chem. A 2017, 5, 6368-6381.
    (23) Zanini, M.; Basu, S. and Fischer, J.; Alternate Synthesis and Reflectivity Spectrum of stage 1 Lithium—Graphite Intercalation Compound. Carbon 1978, 16, 211-212.
    (24) Aurbach, D.; Markovsky, B.; Weissman, I.; Levi, E. and Ein-Eli, Y.; On the Correlation between Surface Chemistry and Performance of Graphite Negative Electrodes for Li-ion Batteries. Electrochim. Acta 1999, 45, 67-86.
    (25) Ein Eli, Y.; McDevitt, S. F.; Aurbach, D.; Markovsky, B. and Schechter, A.; Methyl Propyl Carbonate: A Promising Single Solvent for Li‐Ion Battery Electrolytes. J. Electrochem. Soc. 1997, 144, L180-L184.
    (26) Goodenough, J. B. and Kim, Y.; Challenges for Rechargeable Li Batteries. Chem. Mater. 2009, 22, 587-603.
    (27) Marcus, Y., Ion Solvation. Wiley: New York, 1985; p 135.
    (28) Stephan, A. M.; Review on Gel Polymer Electrolytes for Lithium Batteries. Eur. Polym. J. 2006, 42, 21-42.
    (29) Meesala, Y.; Jena, A.; Chang, H. and Liu, R. S.; Recent Advancements in Li-Ion Conductors for All-Solid-State Li-Ion Batteries. ACS Energy Lett. 2017, 2, 2734-2751.
    (30) Kobayashi, T.; Yamada, A. and Kanno, R.; Interfacial Reactions at Electrode/Electrolyte Boundary in All Solid-State Lithium Battery Using Inorganic Solid Electrolyte, Thio-LISICON. Electrochim. Acta 2008, 53, 5045-5050.
    (31) Yu, C.; Zhao, F.; Luo, J.; Zhang, L. and Sun, X.; Recent Development of Lithium Argyrodite Solid-State Electrolytes for Solid-State Batteries: Synthesis, Structure, Stability and Dynamics. Nano Energy 2021, 83, 105858.
    (32) Stramare, S.; Thangadurai, V. and Weppner, W.; Lithium Lanthanum Titanates: A Review. Chem. Mater. 2003, 15, 3974-3990.
    (33) Epp, V.; Ma, Q.; Hammer, E.-M.; Tietz, F. and Wilkening, M.; Very Fast Bulk Li Ion Diffusivity in Crystalline Li1.5Al0.5Ti1.5(PO4)3 as Seen Using NMR Relaxometry. Phys. Chem. Chem. Phys. 2015, 17, 32115-32121.
    (34) Thangadurai, V.; Kaack, H. and Weppner, W. J.; Novel Fast Lithium Ion Conduction in Garnet‐Type Li5La3M2O12 (M= Nb, Ta). J. Am. Ceram. Soc. 2003, 86, 437-440.
    (35) Murugan, R.; Thangadurai, V. and Weppner, W.; Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12. Angew. Chem. Int. Ed. 2007, 46, 7778-7781.
    (36) Awaka, J.; Kijima, N.; Hayakawa, H. and Akimoto, J.; Synthesis and Structure Analysis of Tetragonal Li7La3Zr2O12 with The Garnet-related type Structure. J. Solid State Chem. 2009, 182, 2046-2052.
    (37) Buschmann, H.; Dölle, J.; Berendts, S.; Kuhn, A.; Bottke, P.; Wilkening, M.; Heitjans, P.; Senyshyn, A.; Ehrenberg, H. and Lotnyk, A.; Structure and Dynamics of the Fast Lithium ion Conductor “Li7La3Zr2O12”. Phys. Chem. Chem. Phys. 2011, 13, 19378-19392.
    (38) Bernuy-Lopez, C.; Manalastas Jr, W.; Lopez del Amo, J. M.; Aguadero, A.; Aguesse, F. and Kilner, J. A.; Atmosphere Controlled Processing of Ga-Substituted Garnets for High Li-Ion Conductivity Ceramics. Chem. Mater. 2014, 26, 3610-3617.
    (39) Li, Y.; Wang, Z.; Li, C.; Cao, Y. and Guo, X.; Densification and Ionic-Conduction Improvement of Lithium Garnet Solid Electrolytes by Flowing Oxygen Sintering. J. Power Sources 2014, 248, 642-646.
    (40) Wang, D.; Zhong, G.; Pang, W. K.; Guo, Z.; Li, Y.; McDonald, M. J.; Fu, R.; Mi, J.-X. and Yang, Y.; Toward Understanding the Lithium Transport Mechanism in Garnet-Type Solid Electrolytes: Li+ Ion Exchanges and Their Mobility at Octahedral/Tetrahedral Sites. Chem. Mater. 2015, 27, 6650-6659.
    (41) Meesala, Y.; Liao, Y.-K.; Jena, A.; Yang, N.-H.; Pang, W. K.; Hu, S.-F.; Chang, H.; Liu, C.-E.; Liao, S.-C.; Chen, J.-M. and Riu, R. S.; An Efficient Multi-Doping Strategy to Enhance Li-Ion Conductivity in the Garnet-Type Solid Electrolyte Li7La3Zr2O12. J. Mater. Chem. A 2019, 7, 8589-8601.
    (42) Xia, S.; Wu, X.; Zhang, Z.; Cui, Y. and Liu, W.; Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries. Chem 2019, 5, 753-785.
    (43) Cheng, X.-B.; Zhao, C.-Z.; Yao, Y.-X.; Liu, H. and Zhang, Q.; Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes. Chem 2019, 5, 74-96.
    (44) Xu, R.; Xia, X.; Zhang, S.; Xie, D.; Wang, X. and Tu, J.; Interfacial Challenges and Progress for Inorganic All-Solid-State Lithium Batteries. Electrochim. Acta 2018, 284, 177-187.
    (45) Monroe, C. and Newman, J.; The Effect of Interfacial Deformation on Electrodeposition Kinetics. J. Electrochem. Soc. 2004, 151, A880-A886.
    (46) Han, F.; Westover, A. S.; Yue, J.; Fan, X.; Wang, F.; Chi, M.; Leonard, D. N.; Dudney, N. J.; Wang, H. and Wang, C.; High Electronic Conductivity as the Origin Of Lithium Dendrite Formation Within Solid Electrolytes. Nat. Energy 2019, 4, 187-196.
    (47) Porz, L.; Swamy, T.; Sheldon, B. W.; Rettenwander, D.; Frömling, T.; Thaman, H. L.; Berendts, S.; Uecker, R.; Carter, W. C. and Chiang, Y. M.; Mechanism of Lithium Metal Penetration Through Inorganic Solid Electrolytes. Adv. Energy Mater. 2017, 7, 1701003.
    (48) Sharafi, A.; Meyer, H. M.; Nanda, J.; Wolfenstine, J. and Sakamoto, J.; Characterizing the Li–Li7La3Zr2O12 Interface Stability and Kinetics as a Function of Temperature and Current Density. J. Power Sources 2016, 302, 135-139.
    (49) Wang, S.; Xu, H.; Li, W.; Dolocan, A. and Manthiram, A.; Interfacial Chemistry in Solid-State Batteries: Formation of Interphase and its Consequences. J. Am. Chem. Soc. 2018, 140, 250-257.
    (50) Cheng, X.-B.; Zhang, R.; Zhao, C.-Z. and Zhang, Q.; Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem. Rev. 2017, 117, 10403-10473.
    (51) Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y. and Zhang, J.-G.; Lithium Metal Anodes for Rechargeable Batteries. Energy Environ. Sci. 2014, 7, 513-537.
    (52) Zhu, Y.; He, X. and Mo, Y.; Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. ACS Appl. Mater. Interfaces 2015, 7, 23685-23693.
    (53) Wenzel, S.; Leichtweiss, T.; Krüger, D.; Sann, J. and Janek, J.; Interphase Formation on Lithium Solid Electrolytes—An In Situ Approach to Study Interfacial Reactions by Photoelectron Spectroscopy. Solid State Ion. 2015, 278, 98-105.
    (54) Han, X.; Gong, Y.; Fu, K. K.; He, X.; Hitz, G. T.; Dai, J.; Pearse, A.; Liu, B.; Wang, H. and Rubloff, G.; Negating Interfacial Impedance in Garnet-Based Solid-State Li Metal Batteries. Nat. Mater. 2017, 16, 572-579.
    (55) Luo, W.; Gong, Y.; Zhu, Y.; Fu, K. K.; Dai, J.; Lacey, S. D.; Wang, C.; Liu, B.; Han, X. and Mo, Y.; Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte. J. Am. Chem. Soc. 2016, 138, 12258-12262.
    (56) Fu, K.; Gong, Y.; Fu, Z.; Xie, H.; Yao, Y.; Liu, B.; Carter, M.; Wachsman, E. and Hu, L.; Transient Behavior of the Metal Interface in Lithium Metal–Garnet Batteries. Angew. Chem. Int. Ed. 2017, 56, 14942-14947.
    (57) He, M.; Cui, Z.; Chen, C.; Li, Y. and Guo, X.; Formation of Self-Limited, Stable and Conductive Interfaces between Garnet Electrolytes and Lithium Anodes for Reversible Lithium Cycling in Solid-State Batteries. J. Mater. Chem. A 2018, 6, 11463-11470.
    (58) Fu, K. K.; Gong, Y.; Liu, B.; Zhu, Y.; Xu, S.; Yao, Y.; Luo, W.; Wang, C.; Lacey, S. D. and Dai, J.; Toward Garnet Electrolyte–Based Li Metal Batteries: An Ultrathin, Highly Effective, Artificial Solid-State Electrolyte/Metallic Li Interface. Sci. Adv. 2017, 3, e1601659.
    (59) Luo, W.; Gong, Y.; Zhu, Y.; Li, Y.; Yao, Y.; Zhang, Y.; Fu, K.; Pastel, G.; Lin, C. F. and Mo, Y.; Reducing Interfacial Resistance between Garnet‐Structured Solid‐State Electrolyte and Li‐Metal Anode by A Germanium Layer. Adv. Mater. 2017, 29, 1606042.
    (60) Samson, A. J.; Hofstetter, K.; Bag, S. and Thangadurai, V.; A Bird's-Eye View of Li-Stuffed Garnet-Type Li7La3Zr2O12 Ceramic Electrolytes for Advanced All-Solid-State Li Batteries. Energy Environ. Sci. 2019, 12, 2957-2975.
    (61) Sheng, O.; Jin, C.; Ding, X.; Liu, T.; Wan, Y.; Liu, Y.; Nai, J.; Wang, Y.; Liu, C. and Tao, X.; A Decade of Progress on Solid‐State Electrolytes for Secondary Batteries: Advances and Contributions. Adv. Funct. Mater. 2021, 31, 2100891.
    (62) Zhao, B.; Ma, W.; Li, B.; Hu, X.; Lu, S.; Liu, X.; Jiang, Y. and Zhang, J.; A Fast and Low-Cost Interface Modification Method to Achieve High-Performance Garnet-Based Solid-State Lithium Metal Batteries. Nano Energy 2022, 91, 106643.
    (63) Bruker D2 Phaser X-ray Diffraction. .
    (64) Nada, M. H. In BAOJ Microbiology Scanning Electron Microscopy, 2015.
    (65) Principe, E. L.; Gnauck, P. and Hoffrogge, P.; A Three Beam Approach to TEM Preparation Using In-situ Low Voltage Argon Ion Final Milling in a FIB-SEM Instrument. Microsc. Microanal. 2005, 11, 830-831.
    (66) Reyntjens, S. and Puers, R.; A Review Of Focused Ion Beam Applications In Microsystem Technology. Journal of micromechanics and microengineering 2001, 11, 287.
    (67) Franken, L. E.; Grünewald, K.; Boekema, E. J. and Stuart, M. C.; A Technical Introduction to Transmission Electron Microscopy for Soft‐Matter: Imaging, Possibilities, Choices, and Technical Developments. Small 2020, 16, 1906198.
    (68) Chang, B.-Y. and Park, S.-M.; Electrochemical Impedance Spectroscopy. Annu. Rev. Anal. Chem. 2010, 3, 207-229.
    (69) Aoyagi, S.; Time-of-Flight Secondary Ion Mass Spectrometry. Compendium of Surface and Interface Analysis 2018, 725-731.
    (70) Liao, Y.-K.; Tong, Z.; Fang, C.-C.; Liao, S.-C.; Chen, J.-M.; Liu, R. S. and Hu, S.-F.; Extensively Reducing Interfacial Resistance by the Ultrathin Pt Layer between the Garnet-Type Solid-State Electrolyte and Li–Metal Anode. ACS Appl. Mater. Interfaces 2021, 13, 56181-56190.
    (71) Wang, S.-H.; Yue, J.; Dong, W.; Zuo, T.-T.; Li, J.-Y.; Liu, X.; Zhang, X.-D.; Liu, L.; Shi, J.-L. and Yin, Y.-X.; Tuning Wettability of Molten Lithium Via A Chemical Strategy for Lithium Metal Anodes. Nat. Commun. 2019, 10, 1-8.
    (72) Liao, Y.-K.; Tong, Z.; Liu, S.-A.; Huang, J.-H.; Liu, R. S. and Hu, S.-F.; Spontaneous In Situ Formation of Lithium Metal Nitride in the Interface of Garnet-Type Solid-State Electrolyte by Tuning of Molten Lithium. ACS Appl. Mater. Interfaces 2023, 15, 10283-10291.
    (73) Wen, C. J. and Huggins, R. A.; Electrochemical Investigation of the Lithium‐Gallium System. J. Electrochem. Soc. 1981, 128, 1636.
    (74) Kishore, M. S. and Varadaraju, U.; Phosphides with Zinc Blende Structure as Anodes for Lithium-Ion Batteries. J. Power Sources 2006, 156, 594-597.
    (75) He, X.; Yan, F.; Gao, M.; Shi, Y.; Ge, G.; Shen, B. and Zhai, J.; Cu-Doped Alloy Layer Guiding Uniform Li Deposition on a Li–LLZO Interface under High Current Density. ACS Appl. Mater. Interfaces 2021, 13, 42212-42219.
    (76) Wen, J.; Huang, L.; Huang, Y.; Luo, W.; Huo, H.; Wang, Z.; Zheng, X.; Wen, Z. and Huang, Y.; A lithium-MXene Composite Anode with High Specific Capacity and Low Interfacial Resistance for Solid-State Batteries. Energy Storage Materials 2022, 45, 934-940.

    無法下載圖示 電子全文延後公開
    2028/08/01
    QR CODE