簡易檢索 / 詳目顯示

研究生: 洪紹豪
Hong, Shao-Hao
論文名稱: 利用膦試劑誘導生成季鏻鹽以合成雙雜環化合物及呋喃[3,2-c]香豆素衍生物
Preparation of Bis-heterocycles and Furo[3,2-c]coumarins via Phosphonium Salt Intermediates
指導教授: 林文偉
Lin, Wen-Wei
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 550
中文關鍵詞: 膦試劑鏻鹽雙雜環化合物呋喃香豆素Wittig 反應
英文關鍵詞: phosphine, phosphonium salt, bis-heterocycles, furocoumarin, Wittig reaction
論文種類: 學術論文
相關次數: 點閱:323下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一章:利用吲哚、水楊醛及醯氯行縮合/醯化/Wittig連鎖反應,在酸以及膦試劑的誘導下可以成功地合成吲哚-苯并呋喃加成物。此反應所需條件十分溫和,不需使用過渡金屬催化,起始物也不需預先處理或活化,為一合成雙雜環化合物的新路徑。反應中所生成的中間體為可簡單分離並純化的穩定季鏻鹽,是一具有潛力的Wittig試劑。

    第二章:利用查耳酮香豆素作為起始物,與膦試劑及醯氯反應後可有效率地得到應用性多元的季鏻鹽中間體,其可加入飽和碳酸氫鈉水溶液切除膦試劑,得到呋喃[3,2-c]香豆素產物;亦可加入鹼及高活性的羰基化合物並進行分子間Wittig反應,得到具有烯烴的呋喃[3,2-c]香豆素產物。此法的反應條件十分溫和,可在短時間內得到預期產物。

    Chapter I: An acid-mediated condensation/acylation/Wittig tandem reaction between indoles, salicylaldehyde dericatives and acyl chlorides to generate indole-benzo[b]furan adducts is described. This highly efficient approach towards such bis-heterocyclic compounds via easily accessible phosphonium salt intermediates has not been reported. Under metal-free reaction conditions and without preactivation of the coupling partners, this synthetic strategy provides the desired products in moderate to good yields in a two-step procedure. Furthermore, we also developed a protocol in a one-pot approach with the only slightly diminished yield of the desired adduct.

    Chapter II: A Bu3P-mediated cyclisation reaction of 3-cinnamoyl-4-hydroxy-2H-chromen-2-ones via electrophilic addition of acyl chlorides towards the synthesis of highly functionalized furo[3,2-c]coumarins bearing a phosphorus ylide moiety is described. These unprecedented cyclisation reactions proceed under mild reaction conditions within short reaction times (1 min to 1 h), and can be further applied in the synthesis of alkenyl-substituted furo[3,2-c]coumarins after the treatment with carbonyl electrophiles under basic condition.

    簡歷 I 謝誌 II 摘要 III Abstract IV 目錄 V 第一章、利用膦試劑誘導吲哚生成季鏻鹽以合成雙雜環化合物 1 1-1前言 1 1-1-1吲哚衍生物 1 1-1-2苯并[b]呋喃衍生物 3 1-2雙雜環化合物合成方法及文獻探討 4 1-2-1偶合反應製備雙環化合物 4 1-2-2吲哚的反應性 9 1-3研究動機 12 1-4實驗結果與討論 14 1-4-1起始物製備 14 1-4-2嘗試合成兩性離子中間體 15 1-4-3利用以對甲苯磺酸作為對離子之季鏻鹽中間體合成多環化合物 19 1-4-4於室溫下合成季鏻鹽 23 1-4-5於室溫下篩選最佳溶劑 25 1-4-6篩選不同膦試劑 26 1-4-7於室溫下篩選最佳化反應條件 30 1-4-8水楊醛之官能基測試與探討 31 1-4-9分子內Wittig合環反應之官能基測試與探討 32 1-4-10一鍋化反應 34 1-4-11反應機制探討 34 1-5結論 35 1-6實驗部分 36 1-6-1分析儀器及基本實驗操作 36 1-6-2實驗操作步驟 38 1-6-3 製備步驟及光譜數據 39 1-7 參考資料 62 第二章、利用膦試劑誘導合成呋喃[3,2-c]香豆素衍生物 64 2-1前言 64 2-2 呋喃[3,2-c]香豆素的合成與文獻探討 66 2-2-1 建構呋喃 66 2-2-2 建構-吡喃酮 70 2-2-3 其他方法 71 2-3研究動機 73 2-4實驗結果與討論 75 2-4-1起始物製備 75 2-4-2首次嘗試合成呋喃香豆素 76 2-4-3最佳化反應條件 77 2-4-4起始物官能基耐受度探討 80 2-4-5醯氯官能基耐受度探討 82 2-4-6同時改變起始物及醯氯的官能基 83 2-4-7重要中間體季鏻鹽的研究 86 2-4-8利用季鏻鹽中間體合成烯烴產物 88 2-4-9最佳化合成烯烴呋喃[3,2-c]香豆素反應條件 89 2-4-10以乙基乙醛酯作為親電試劑的官能基耐受度探討 90 2-4-11以茚三酮作為親電試劑的官能基耐受度探討 92 2-4-12鑑定反應中間體 94 2-4-13設計控制實驗 96 2-4-14設計開環起始物合成四取代呋喃 97 2-4-15反應機制探討 99 2-5結論 100 2-6實驗部分 101 2-6-1分析儀器及基本實驗操作 101 2-6-2實驗操作步驟 103 2-6-3 製備步驟及光譜數據 105 2-7 參考資料 159 附錄1 161 附錄2 333

    [1] D. A. Horton, G. T. Bourne, M. L. Smythe, Chem. Rev. 2003, 103, 893-930.
    [2] R. M. Wood, J. K. Rilling, A. G. Sanfey, Z. Bhagwagar, R. D. Rogers, Neuropsychopharmacol. 2006, 31, 1075-1084.
    [3] K. Kang, S. Park, Y. Kim, S. Lee, K. Back, Appl. Microbiol. Biotechnol. 2009, 83, 27-34.
    [4] F. D. Hart, P. L. Boardman, Br. Med. J 1963, 2, 965-970.
    [5] S. Rida, S. M. El-Hawash, H. Y. Fahmy, A. Hazzaa, M. M. El-Meligy, Arch. Pharmacal Res. 2006, 29, 826-833.
    [6] K. Tamao, K. Sumitani, M. Kumada, J. Am. Chem. Soc. 1972, 94, 4374-4376.
    [7] M. G. Organ, M. Abdel-Hadi, S. Avola, N. Hadei, J. Nasielski, C. J. O'Brien, C. Valente, Chem. Eur. J. 2007, 13, 150-157.
    [8] A. O. King, N. Okukado, E.-i. Negishi, J. Am. Chem. Soc. 1977, 683-684.
    [9] Y. Yang, N. J. Oldenhuis, S. L. Buchwald, Angew. Chem., Int. Ed. 2013, 52, 615-619.
    [10] D. Milstein, J. K. Stille, J. Am. Chem. Soc. 1978, 100, 3636-3638.
    [11] S. K. Mal, L. Bohé, S. Achab, Tetrahedron 2008, 64, 5904-5914.
    [12] N. A. Markina, Y. Chen, R. C. Larock, Tetrahedron 2013, 69, 2701-2713.
    [13] M. Amjad, D. W. Knight, Tetrahedron Lett. 2004, 45, 539-541.
    [14] Y. Li, W.-H. Wang, S.-D. Yang, B.-J. Li, C. Feng, Z.-J. Shi, Chem. Commun. 2010, 46, 4553-4555.
    [15] B. Join, T. Yamamoto, K. Itami, Angew. Chem. Int. Ed. 2009, 48, 3644-3647.
    [16] M. Barbero, S. Cadamuro, S. Dughera, C. Magistris, P. Venturello, Org. Biomol. Chem. 2011, 9, 8393-8399.
    [17] M. Barbero, S. Cadamuro, F. Cauda, S. Dughera, G. Gervasio, P. Venturello, J. Org. Chem. 2012, 77, 4278-4287.
    [18] S.-e. Syu, Y.-T. Lee, Y.-J. Jang, W. Lin, Org. Lett. 2011, 13, 2970-2973.
    [19] C.-J. Lee, Y.-J. Jang, Z.-Z. Wu, W. Lin, Org. Lett. 2012, 14, 1906-1909.
    [20] Z.-Z. Wu, Y.-J. Jang, C.-J. Lee, Y.-T. Lee, W. Lin, Org. Biomol. Chem. 2013, 11, 828-834.
    [21] O. Ottoni, R. Cruz, R. Alves, Tetrahedron 1998, 54, 13915-13928.
    [22] P. Srihari, V. K. Singh, D. C. Bhunia, J. S. Yadav, Tetrahedron Lett. 2009, 50, 3763-3766.
    [23] W. A. Henderson, S. A. Buckler, J. Am. Chem. Soc. 1960, 82, 5794-5800.
    [1] X. Wang, K. F. Bastow, C.-M. Sun, Y.-L. Lin, H.-J. Yu, M.-J. Don, T.-S. Wu, S. Nakamura, K.-H. Lee, J. Med. Chem. 2004, 47, 5816-5819.
    [2] C. C. Li, Z. X. Xie, Y. D. Zhang, J. H. Chen, Z. Yang, J. Org. Chem. 2003, 68, 8500-8504.
    [3] G. A. Kraus, N. Zhang, J. Org. Chem. 2000, 65, 5644-5646.
    [4] M. Neelgundmath, K. R. Dinesh, C. D. Mohan, F. Li, X. Dai, K. S. Siveen, S. Paricharak, D. J. Mason, J. E. Fuchs, G. Sethi, A. Bender, K. S. Rangappa, O. Kotresh, Basappa, Bioorg. Med. Chem. 2015, 25, 893-897.
    [5] G. Raffa, M. Rusch, G. Balme, N. Monteiro, Org. Lett. 2009, 11, 5254-5257.
    [6] Z. Zareai, M. Khoobi, A. Ramazani, A. Foroumadi, A. Souldozi, K. Ślepokura, T. Lis, A. Shafiee, Tetrahedron 2012, 68, 6721-6726.
    [7] X.-c. Tan, H.-y. Zhao, Y.-m. Pan, N. Wu, H.-s. Wang, Z.-f. Chen, RSC Adv.
    2015, 5, 4972-4975.
    [8] S. Ponra, M. Gohain, J. H. van Tonder, B. C. B. Bezuidenhoudt, Synlett 2015, 26, 745-750.
    [9] W.-Y. Huang, Y.-C. Chen, K. Chen, Asian J. Chem. 2012, 7, 688-691.
    [10] P. Nealmongkol, K. Tangdenpaisal, S. Sitthimonchai, S. Ruchirawat, N. Thasana, Tetrahedron 2013, 69, 9277-9283.
    [11] T.-H. Lee, J. Jayakumar, C.-H. Cheng, S.-C. Chuang, Chem. Commun. 2013, 49, 11797-11799.
    [12] G. Cheng, Y. Hu, Chem. Commun. 2007, 3285-3287.
    [13] G. Cheng, Y. Hu, J. Org. Chem. 2008, 73, 4732-4735.
    [14] C.-J. Lee, Y.-J. Jang, Z.-Z. Wu, W. Lin, Org. Lett. 2012, 14, 1906-1909.
    [15] S. Sukdolak, S. Solujić, N. Manojlović, N. Vuković, L. J. Krstić, J. Heterocycl. Chem. 2004, 41, 593-596.
    [16] O. M. Abdelhafez, K. M. Amin, R. Z. Batran, T. J. Maher, S. A. Nada, S. Sethumadhavan, Bioorg. Med. Chem. 2010, 18, 3371-3378.
    [17] Z.-Z. Wu, Y.-J. Jang, C.-J. Lee, Y.-T. Lee, W. Lin, Org. Biomol. Chem. 2013, 11, 828-834.
    [18] C.-J. Lee, C.-C. Tsai, S.-H. Hong, G.-H. Chang, M.-C. Yang, L. Möhlmann, W. Lin, Angew. Chem. Int. Ed. 2015, n/a-n/a.

    無法下載圖示 本全文未授權公開
    QR CODE