簡易檢索 / 詳目顯示

研究生: 葉雲友
Yun-Yu Yeh
論文名稱: 以射頻磁控濺鍍法製備二氧化鈦光觸媒玻璃之製程參數與特性研究
Process Parameters and Thin Film Properties for Titania Photocatalytic Glass by RF magnetron sputtering
指導教授: 鄧敦平
Teng, Tun-Ping
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 114
中文關鍵詞: 射頻磁控濺鍍法二氧化鈦薄膜光催化特性
英文關鍵詞: RF magnetron sputtering, TiO2 thin films, photocatalytic properties
論文種類: 學術論文
相關次數: 點閱:149下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以射頻磁控濺鍍法(RF magnetron sputtering),使用高純度金屬鈦為
    靶材,利用一階氧化製程且不另外加熱方式將二氧化鈦(Titania, TiO2)薄膜直
    接沉積於玻璃基材上,成功製作出TiO2 光觸媒玻璃。藉由氣氛比例、氣體流量
    與沉積時間之參數改變,探討實驗參數對TiO2 薄膜結構與特性的影響。利用XRD、
    HR-FESEM、AFM 等儀器進行量測並分析製程參數 與薄膜特性關係,篩選出較
    佳的鍍膜參數,作為後續光催化特性實驗的樣本。接著利用光譜儀配合亞甲基藍
    污染物與接觸角量測儀進行鍍膜玻璃之光學、親疏水與光催化降解污染物的特性
    量測,相關特性實驗結果配合第一次篩選出的鍍膜參數,即可決定最佳鍍膜參數,
    提供後續鍍膜玻璃對於太陽能電池輸出性能影響之研究使用。實驗結果顯示,鍍
    膜玻璃在紫/紅外線波段的穿透值有明顯下降,顯示鍍膜具有抗紫/紅外線的性能。
    在水滴接觸角量測方面,證明製備的二氧化鈦薄膜具光致超親水特性,接觸角最
    佳可達3.58 度。在光催化降解亞甲基藍實驗方面,最佳樣本的亞甲基藍降解率
    可提昇至對照組的4 倍。最後在鍍膜玻璃對於太陽能電池輸出性能影響方面,鍍
    膜玻璃可降低太陽能電池表面溫度與提升太陽能電池的輸出性能。未來將利用此
    最佳薄膜製程參數,能夠應用於製造小範圍且具極高實用性的相關產品。

    In this study, radio frequency (RF) magnetron sputtering is used for the
    successful production of thin films of titania (TiO2) on glass substrates using a highly
    pure Ti target without additional external heating in a one-stage oxidation process.
    The effects of the O2 and Ar flow ratio, gas flow, and deposition time on the structure
    and characteristics of TiO2 thin films are studied, and the relationship between these
    parameters and the film properties are investigated by X-Ray Diffraction (XRD),
    High Resolution Field Emission Scanning Electron Microscope (HR-FESEM),
    Atomic Force Microscope (AFM), and other equipment. The optimal coating
    parameters are selected a photocatalytic properties experiments. In addition, the
    degradation of the methylene blue aqueous solution and the water contact angle are
    used to evaluate the optical characteristics, and the hydrophilic, hydrophobic, and
    photocatalytic degradation of pollutants for TiO2 thin films. The first screening of the
    coating parameters can determine the optimal process parameters for TiO2 coated
    glass in solar cell output performance experiments.

    摘 要 i ABSTRACT ii 誌 謝 iv 目 錄 v 表目錄 vii 圖目錄 viii 第壹章 緒論 1 1.1前言 1 1.2研究動機 2 1.3研究目的 3 1.4研究方法 3 1.5論文架構 5 1.6文獻回顧 6 1.6.1.氬氧比例對二氧化鈦薄膜性質之影響 6 1.6.2.射頻功率對二氧化鈦薄膜性質之影響 7 1.6.3.基板溫度對二氧化鈦薄膜性質之影響 8 1.6.4.製程壓力對二氧化鈦薄膜性質之影響 8 1.6.5.退火溫度對二氧化鈦薄膜性質之影響 9 第貳章 理論探討與文獻回顧 11 2.1光觸媒之簡介 11 2.2二氧化鈦之簡介 14 2.2.1.二氧化鈦材料特性 16 2.2.2.二氧化鈦光反應機制 18 2.2.3.二氧化鈦光觸媒特性 20 2.3二氧化鈦薄膜之製備方法 22 2.3.1.液相製備法 22 2.3.2.氣相製備法 23 2.4濺鍍原理 25 2.4.1.直流/射頻濺鍍 26 2.4.2.磁控濺鍍 26 2.4.3.反應性濺鍍 27 2.4.4.薄膜成長理論 28 2.5光觸媒的應用與發展 29 第參章 實驗設計與規劃 31 3.1實驗規劃 31 3.2實驗流程 32 3.3實驗設備 33 3.4薄膜製作 36 3.4.1.基板前處理 36 3.4.2.薄膜濺鍍步驟 37 3.4.3.實驗參數設定 38 3.5薄膜材料特性量測設備 40 3.5.1.薄膜結晶型態量測 40 3.5.2.薄膜表面形貌量測 42 3.5.3.薄膜沉積速率量測 42 3.6薄膜光催化特性量測設備 46 3.6.1.薄膜光學特性量測 46 3.6.2.薄膜親水特性量測 46 3.6.3.亞甲基藍分解實驗 46 3.7太陽能電池鍍膜玻璃之應用測試 49 第肆章 實驗結果與討論 51 4.1製程參數對TiO2光觸媒薄膜特性分析結果 51 4.1.1.薄膜結晶型態分析 51 4.1.2.薄膜表面形貌分析 63 4.1.3.薄膜沉積速率分析 80 4.1.4.薄膜特性評估 85 4.2薄膜光催化特性量測結果與討論 86 4.2.1.薄膜光學特性量測結果 86 4.2.2.薄膜親水特性量測結果 89 4.2.3.亞甲基藍分解實驗量測結果 93 4.2.4.薄膜光催化特性評估 96 4.3太陽能電池鍍膜玻璃之量測結果與討論 97 第伍章 結論與未來展望 101 5.1結論 101 5.2未來展望 103 參考文獻 104 略 傳 113

    [1] I. K. Konstantinou, T. A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigationsA review, Applied Catalysis B: Environmental, 49 (2004) 1-14.
    [2] W. Z. Tang, H. An, UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions, Chemosphere, 31 (1995) 4158-4170.
    [3] E. Forgacs, T. Cserhati, G. Oros, Removal of synthetic dyes from wastewaters: a review, Environment International, 30 (2004) 953-971.
    [4] M. Sleiman, D. Vildozo, C. Ferronato, J.-M. Chovelon, Photocatalytic degradation of azo dye Metanil Yellow: optimization and kinetic modeling using a chemometric approach, Applied Catalysis B: Environmental, 77 (2007) 1-11.
    [5] S. Chakrabarti, B. K. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst, Journal of Hazardous Materials, B112 (2004) 269-278.
    [6] M.P. Reddy, A. Venugopal, M. Subrahmanyam, Hydroxyapatite photocatalytic degradation of calmagite (an azo dye) in aqueous suspension, Applied Catalysis B: Environmental, 69 (2007) 164-170.
    [7] M. Saquiba, M.A. Tariqa, M. Faisala, M. Muneer, Photocatalytic degradation of two selected dye derivatives in aqueous suspensions of titanium dioxide, Desalination, 219 (2008) 301-311.
    [8] C. G. Silva, W. Wang, J. L. Faria, Photocatalytic and photochemical degradation of mono- di- and tri-azo dyes in aqueous solution under UV irradiation, Journal of Photochemistry and Photobiology A: Chemistry, 181 (2006) 314-324.
    [9] M. Stylidi, D. I. Kondarides, X. E. Verykios, Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions, Applied Catalysis B: Environmental, 47 (2004) 189-201.
    [10] C. Su, B.Y. Hong, C. M. Tseng, Sol–gel preparation and photocatalysis of titanium dioxide, Catalysis Today, 96 (2004) 119-126.
    [11] J. Sun, X. Wang, J. Sun, R. Sun, S. Sun, L. Qiao, Photocatalytic degradation and kinetics of Orange G using nano-sized Sn(IV)/TiO2/AC photocatalyst, Journal of Molecular Catalysis A: Chemical, 260 (2006) 241-246.
    [12] J. Madhavan, P. Maruthamuthu, S. Murugesan, S. Anandan, Kinetic studies on visible light-assisted degradation of acid red 88 in presence of metal-ion coupled oxone reagent, Applied Catalysis B: Environmental, 83 (2008) 8-14.
    [13] J. Yu, X. Zhao, Effect of substrates on the photocatalytic activity of nanometer TiO2 thin films, Materials Research Bulletin, 35 (2000) 1293-1301.
    [14] P. Evans, D.W. Sheel, Photoactive and antibacterial TiO2 thin films on stainless steel, Surface and Coatings Technology, 201 (2007) 9319-9324.
    [15] S. H. Zhang, B. F. Hu, B. Xie, S. Y. Zhang, F. Y. Li, Preparation of Titania Film by Pyrolysis of Chelated Tetrabutyl Titanate, Key Engineering Materials, 372 (2008) 1468-1470.
    [16] L. Sirghi, T. Aoki, Y. Hatanaka, Hydrophilicity of TiO2 thin films obtained by radio frequency magnetron sputtering deposition, Thin Solid Films, 422 (2002) 55-61.
    [17] K. O. Awitor, A. Rivaton, J. L. Gardette, A. J. Down, M. B. Johnson, Photo-protection and photo-catalytic activity of crystalline anatase titanium dioxide sputter-coated on polymer films, Thin Solid Films, 516 (2008) 2286-2291.
    [18] R. S. Pessoa, H. S. Maciel, M. Massi, U. A. Mengui, The effect of oxygen concentration on the low temperature deposition of TiO2 thin films, Surface and Coatings Technology, 202 (2008) 2126-2131.
    [19] C. C. Chen, W. J. Yang, C.Y. Hsu, Investigation into the effects of deposition parameters on TiO2 photocatalyst thin films by rf magnetron sputtering, Superlattices and Microstructures, 46 (2009) 461-468.
    [20] M. Grätzel, Photoelectrochemical cells, Nature, 414 (2001) 338-344
    [21] J. Xiong, S.N. Das, S. Kim, J. Lim, H. Choi, J.-M. Myoung, Photo-induced hydrophilic properties of reactive RF magnetron sputtered TiO2 thin films, Surface & Coatings Technology, 204 (2010) 3436-3442.
    [22] B.X. Zhao, J.C. Zhou, L.Y. Rong, Microstructure and optical properties of TiO2 thin films deposited at different oxygen flow rates, Transactions of Nonferrous Metals Society of China, 20 (2010) 1429-1433.
    [23] R. Dannenberg, P. Greene, Reactive sputter deposition of titanium dioxide, Thin Solid Films, 360 (2000) 122-127
    [24] H. Ohsaki, Y. Tachibana, A. Hayashi, A. Mitsui, Y. Hayashi, High rate sputter deposition of TiO2 from TiO2-x target, Thin Solid Films, 351 (1999) 57-60.
    [25] H. Toku, R.S. Pessoa, H.S. Maciel, M. Massi, U.A. Mengui, The effect of oxygen concentration on the low temperaturedeposition of TiO2 thin films, Surface & Coatings Technology, 202 (2008) 2126-2131
    [26] Y. Shen, H. Yu, J. Yao, S. Shao, Z. Fana, H. He, J. Shao, Investigation on properties of TiO2 thin films deposited at different oxygen pressures, Optics & Laser Technology, 40 (2008) 550-554.
    [27] M. Yamagishia, S. Kurikib, P.K. Songa, Y. Shigesatoa, Thin film TiO2 photocatalyst deposited by reactive magnetron sputtering, Thin Solid Films, 442 (2003) 227-231.
    [28] P. K. Song, Y. Irie, Y. Shigesato, Crystallinity and photocatalytic activity of TiO2 films deposited by reactive sputtering with radio frequency substrate bias, Thin Solid Films, 496 (2006) 121-125.
    [29] L. Chen, M. E. Graham, G. Li, K. A. Gray, Fabricating highly active mixed phase TiO2 photocatalysts by reactive DC magnetron sputter deposition, Thin Solid Films, 515 (2006) 1176-1181.
    [30] T. Tanaka, K. Teramura, T. Funabiki, Photo-oxidation of cyclonhexane over alumina-supported vanadium oxide catalyst, Journal of Molecular Catalysis A: Chemical, 165 (2001) 299-301.
    [31] O. Treichel, V. Kirchhoff, The influence of pulsed magnetron sputtering on topography and crystallinity of TiO2 films on glass, Surface and Coatings Technology, 123 (2000) 268-272.
    [32] C. Yang, H. Fan, Y. Xi, J. Chen, Z. Li, Effects of depositing temperatures on structure and optical properties of TiO2 film deposited by ion beam assisted electron beam evaporation, Applied Surface Science, 254 (2008) 2685-2689.
    [33] C.C. Chen, W.J. Yang, C.Y. Hsu, Investigation into the effects of deposition parameters on TiO2 photocatalyst thin films by rf magnetron sputtering, Superlattices and Microstructures, 46 (2009) 461-468
    [34] I. Turkevych, Y. Pihosh, M. Goto, A. Kasahara, M. Tosa, S. Kato, K. Takehana, T. Takamasu, G. Kido, N. Koguchi, Photocatalytic properties of titanium dioxide sputtered on a nanostructured substrate, Thin Solid Films, 516 (2008) 2387-2391,
    [35] S. Ohno, D. Sato, M. Kona, P. K. Song, M. Yoshikawa, K. Suzuki, P. Frach, Y. Shigesato, Plasma emission control of reactive sputtering process in mid-frequency mode with dual cathodes to deposit photocatalytic TiO2 films, Thin Solid Films, 445 (2003) 207-212.
    [36] K. Okimura, A. Shibata, N. Maeda, K. Tachibana, Preparation of Rutile TiO2 Films by RF Magnetron Sputtering, Japanese Journal of Applied Physics, 34 (1995) 4950-4955.
    [37] K. Okimura, A. Shibata, N. maeda, K. Tachibana, Y. Noguchi, K. Tsuchida, Preparation of Rutile TiO2 Films by RF Magnetron Sputtering, Japanese Journal of Applied Physics, 34 (1995) 4950
    [38] K. Eufinger, D. Poelman, H. Poelman, R. D. Gryse, G. B. Marin, Photocatalytic activity of dc magnetron sputter deposited amorphous TiO2 thin films, Applied Surface Science, 254 (2007) 148-152.
    [39] J. Yao, J. Shao, H. He, Z. Fan, Effects of annealing on laser-induced damage threshold of TiO2/SiO2 high reflectors, Applied Surface Science, 253 (2007) 911-8914.
    [40] K. Kobayakawa, Y. Murakami, Y. Sato, Journal of Photochemistry and photobiology A: Chemistry,170 (2005) 171-179.
    [41] A. Mills, L. Hunte, An overviewof semiconductor photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry, 108 (1997) 1-35.
    [42] O. Carp, C.L. Huisman,A. Reller, Photoinduced reactivity of titanium oxide photoinduced reactivity of titanium oxide, Journal of Solid State Chemistry, 32 (2004) 33-177.
    [43] M.R. Hoffmann, S.T.Martin,W. Choi, D.W. Bahenemann, Environmental application of semiconductor photocatalysis, Chemical Reviews, 95 (1995) 69-96.
    [44] U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9 (2008) 1-12.
    [45] W.Z. Tang, H. An, Photocatalytic degradation kinetics and mechanism of acid blue 40 by TiO2/UV in aqueous solution, Chemosphere, 31 (1995) 4171-4183.
    [46] A. Hagfeldt, M. Graetzel, Light-Induced Redox Reactions in Nanocrystalline Systems, Chemical Reviews, 95 (1995) 49-68
    [47] M. Miyauchi, A. Nakajima, T. Watanabe, K. Hashimoto, Photocatalysis and Photoinduced Hydrophilicity of Various Metal Oxide Thin Films, Chemistry of Materials, 14 (2002) 2812.
    [48] H. Fu, T. Xu, S. Zhu, Y. Zhu, Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C60, Environmental Science & Technology, 42 (2008) 8064.
    [49] J.C. Yu, J. Yu, W. Ho, J. Zhao, Light-induced super-hydrophilicity and photocatalytic activity of mesoporous TiO2 thin films, Photochemistry and Photobiology, 148 (2002) 331-339.
    [50] A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1 (2000) 1-21
    [51] S. N. Frank, A. J. Bard, Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder, Journal of the American Chemical Society, 99 (1977) 303-304.
    [52] A. Fujishima, K. Hashimoto, T. Watanabe, TiO2 photocatalysis. Fundaments and applications,1st ed. Tokyo: BKC; 1999.
    [53] D. Mardare, G.I. Rusu, The inf luence of heat treatment on the optical properties of titanium oxide thin f ilms, Materials Letters, 56 (2002) 210–214
    [54] B. Xia , H. Huang, Y. Xie, Heat treatment on TiO2 nanoparticles prepared by vapor-phase hydrolysis, Materials Science and Engineering, B57 (1999) 150–154.
    [55] X. Deng, Y. Yue, Z. Gao, Gas-phase photo-oxidation of organic compounds over nanosized TiO2 photocatalysts by various preparations, Applied Catalysis B: Environmental, 23 (2002) 135-147.
    [56] S.S. Watson, D. Beydoun , J.A. Scott , R. Amal, The effect of preparation method on the photoactivity of crystalline titanium dioxide particles, Chemical Engineering Journal, 95 (2003) 213-220.
    [57] A. Mills, S.K. Lee, A. Lepre, Photodecomposition of Ozone Sensitised By a Film of Titanium Dioxide on Glass, Journal of Photochemistry and Photobiology A: Chemistry, 155 (2003) 199-205.
    [58] R.R Bacsaa , J Kiwi, Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid, Applied Catalysis B: Environmental, 16 (1998) 19-29
    [59] D.S. Muggli, L. Ding, Photocatalytic performance of sulfated TiO2 and Degussa P25 TiO2 during oxidation of organics, Applied Catalysis B: Environmental, 94 (2001) 32-181
    [60] T. Ohno, K. Sarukawa, K. Tokieda, M. Matsumura1, Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases, Journal of Catalysis, 203 (2001) 82–86
    [61] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chemical Reviews, 95 (1995) 69-96
    [62] K.O. Awitor, A. Rivaton, J.-L. Gardette, A.J. Down, M.B. Johnson, Photo-protection and photo-catalytic activity of crystalline anatase titanium dioxide sputter-coated on polymer films, Thin Solid Films, 516 (2008) 2286-2291
    [63] 陳光華、鄧金祥,奈米薄膜技術與應用,台北:五南圖書出版股份有限公司,2005。
    [64] D.C.Hague, M. J. Mayo, Controlled Crystallinity during Processing of Nanocrystalline Titania, Journal of the American Ceramic Society, 77 (1994) 1957-1960.
    [65] X. F. Zhao, X. F. Meng, Z. H. Zhang, L. Liu, D. Z. Jia, Preparation and photocatalytic activity of Pb–doped TiO2 thin films, Journal of Inorganic Materials, 19 (2004) 140-146.
    [66] Z. H. Yuan , J. H. Jia , L. D. Zhang , Influence of co-doping of Zn(II)+Fe(III) on the photocatalytic activity of TiO2 for phenol degradation, Materials Chemistry and Physics, 73 (2002 ) 323 -326 .
    [67] 田民波,薄膜技術與薄膜材料,台北:五南圖書出版股份有限公司,2009。
    [68] 王建義譯,薄膜工程學,台北:全華圖書股份有限公司,2008。
    [69] D.S. Richerby, A. Matthews, Advanced Surface Coatings: A Handbook of Surface Engineering, New York, Chapaman and Hall, (1991) 92-100.
    [70] 柯賢文,表面與薄膜處理技術,台北:全華圖書股份有限公司,2008。
    [71] 陳光華、鄧金祥,奈米薄膜技術與應用,台北:五南圖書出版股份有限公司,2005。
    [72] S.K. Zheng, G. Xiang, T.M. Wang, F. Pan, C. Wang, W.C. Hao, Photocatalytic activity studies of TiO2 thin films prepared by r.f. magnetron reactive sputtering, Vacuum, 72 (2004) 79-84.
    [73] 林麗娟,X 光繞射原理及其應用,工業材料,86 (1994) 100-109.
    [74] C.H. Chen, E.M. Kelder, Electrostatic sol-spray deposition (ESSD) and characterisation of nanostructured TiO2 thin films, Thin Solid Films, 342 (1999) 35–41
    [75] T. Sakai, Y. Kuniyoshi, W. Aoki, S. Ezoe, T. Endo, Y. Hoshi, High-rate deposition of photocatalytic TiO2 films by oxygen plasma assist reactive evaporation method, Thin Solid Films, 516 (2008) 5860-5863,.
    [76] H. Toku, R. S. Pessoa , H. S. Maciel, M. Massi, U. A. Mengui, The effect of oxygen concentration on the low temperature deposition of TiO2 thin films, Surface & Coatings Technology, 202 (2008) 2126-2131.
    [77] Y. Xu, M. Shen, Fabrication of anatase-type TiO2 films by reactive pulsed laser deposition for photocatalyst application, Journal of Materials Processing Technology, 202 (2008) 301-306.
    [78] T.S.Yang, C.B Shiu, M.S. Wong, Structure and hydrophilicity of titanium oxide films prepared by electron beam evaporation, Surface Science, 548 (2004) 75-83.
    [79] A. G. Spencer, R. P. Howson, R. W. Lewin, Pressure stability in reactive magnetron sputtering, Thin Solid Films, 158 (1988) 141-149.
    [80] J. Yu, X. Zhao, Effect of substrates on the photocatalytic activity of nanometer TiO2 thin films, Materials Research Bulletin, 35 (2000) 1293–1301.
    [81] L. Sirghi, T. Aoki, Y. Hatanaka, Hydrophilicity of TiO2 thin films obtained by radio frequency magnetron sputtering deposition, Thin Solid Films, 422 (2002) 55–61.

    下載圖示
    QR CODE