簡易檢索 / 詳目顯示

研究生: 李承儒
Lee, Cheng-Ju
論文名稱: 以模糊多目標決策方法定義商用筆記型電腦之S型效用函數
A Fuzzy Multiple Objective Decision Making Method for Deriving the S-Shaped Utility Function of Commercial Laptop Computer
指導教授: 黃啟祐
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 103
中文關鍵詞: 效用函數商務型筆記型電腦目標規劃法多目標決策方法
英文關鍵詞: Utility Function, Commercial laptop computer, Goal Programming, Multi-Objective Decision-Making
DOI URL: http://doi.org/10.6345/THE.NTNU.DIE.046.2018.E01
論文種類: 學術論文
相關次數: 點閱:138下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,筆記型電腦在受到平板電腦和手機的衝擊下,銷量逐年下降,從近年的電腦銷量來看,整體和消費型市場不斷萎縮,相反的,商用筆記型電腦則維持和歷年來一樣的需求總量,對於商用筆記型電腦在商務採購人士的需求,以前都追求穩定、可靠、安全、可管理,但近幾年,商用筆記型電腦有朝向高性能化和輕薄化方向發展的趨勢;商務人士在採買筆記型電腦時,常常無法得到足夠的量化資訊,根據商務採購人士的需求背景不同,和商務採購者的風險態度也影響採買條件的差異,本研究運用多目標決策方法(Multi-Objective Decision-Making, MODM),結合效用函數和風險態度來協助商務採購人士做出購入商用筆記型電腦的偏好選擇。先從文獻探討中,找出其商用筆記型電腦的選購準則,然後根據商務採購人士的偏好,建立專家問卷,歸納出各準則的效用函數及各準則的重要程度,但是由於資訊的不充足或選購者往往有個人主觀喜好,所以選購的時候,常常無法準確的了解其真正需求的產品,而當產生區間權重時,有些情況會發生權重上界和小於1,或是下界大於1的不合理情形發生,此時採用區間模糊寬鬆縮減 (Interval Fuzzy Leniency Reduction) 的方法來處理區間權重值,運用效用函數和商務採購者的風險態度結合做探討,來套入文中的案例,最後使用目標規劃法 (Goal Programming, GP) 在S型效用函數 (S-Shaped Utility Function) 上進行求解驗證,在各個準則目標交互的運算下,求出最接近目標值的滿意解,獲得效用滿意度最高的商用筆記型電腦作為最終的決策結果。

    The market of laptop computer is declining by mobile phone and tablet influenced in recent year. Based on the selling quantity, the market of consumer laptop continue to shrink. Instead, the commercial laptop maintains the shipment quantity. The demand of commercial is used to focus on stability, reliability, security and management, but the criteria add functionality and thin & light feature additionally in the recent. But while business buyers selecting commercial laptop computers, it is hard to get the quantized data of commercial laptop computer. Furthermore, based on the different background and preference on a business buyer, the utility and requirement will be different. The methodologies in this study are using Multi-Objective Decision-Making, MODM to help selecting commercial laptop. This study adopt S-Shaped Utility Function with risk attitude to represent business buyer`s preferences. First, review the literature to define the aspects and criteria. Second, create the utility function and the weight of criteria. Because of insufficient information, people cannot precisely select the product. The weight of criteria might affect the selection. Therefore, the interval values represent the preference of business buyer. The sum of weights usually have an unreasonable status that the upper boundary becomes less than 1, or the lower boundary becomes greater than 1. To avoid this problem, interval fuzzy leniency reduction is applied in this study to overcome the problem which mentioned. Final, using the goal programming to derive the S-Shaped utility function with risk attitude, it can help business buyer to select optimal alternative.

    摘要 i Abstract ii Table of Contents iii List of Table v Chapter 1 Introduction 1 1.1 Research Backgrounds 1 1.2 Research Purposes 2 1.3 Research Motivations and Limitations 3 1.4 Research Method and Framework 4 Chapter 2 Literature Review 9 2.1 Utility Function 9 2.2 Risk Attitude 14 2.3 S-Shaped Utility Function 18 2.4 Description of Aspect and Criteria 21 Chapter 3 Research Methods 31 3.1 Interval-Valued Fuzzy Leniency Reduction 31 3.2 Goal Programming 36 3.3 Goal Programming with S-Shaped Utility Function 40 Chapter 4 Empirical Study 49 4.1 Modified Delphi 49 4.2 Sample description 53 4.3 Weight description by Leniency reduction 55 4.4 The model of utility function 60 4.5 Selection of business buyer preference 72 Chapter 5 Discussion 75 5.1 The measurement of criterion 75 5.2 Managerial Implications 76 Chapter 6 Conclusion 79 References 80 Appendix A: Utility function of criterion 87 Appendix B: Expert questionnaire 91

    Abdeljaouad, I., & Karmouch, A. (2015). Monitoring IPTV quality of experience in overlay networks using utility functions. Journal of Network and Computer Applications, 54(Supplement C), 1-10.

    Abdellaoui, M., L'Haridon, O., & Paraschiv, C. (2011). Experienced vs. described uncertainty: Do we need two prospect theory specifications? Management science, 57(10), 1879-1895.

    Abdellaoui, M., Vossmann, F., & Weber, M. (2005). Choice-based elicitation and decomposition of decision weights for gains and losses under uncertainty. Management science, 51(9), 1384-1399.

    Al-Nowaihi, A., Bradley, I., & Dhami, S. (2008). A note on the utility function under prospect theory. Economics Letters, 99(2), 337-339.

    Arvanitis, S., & Topaloglou, N. (2017). Testing for prospect and Markowitz stochastic dominance efficiency. Journal of Econometrics, 198(2), 253-270.

    Attema, A. E., Brouwer, W. B. F., l’Haridon, O., & Pinto, J. L. (2016). An elicitation of utility for quality of life under prospect theory. Journal of Health Economics, 48(Supplement C), 121-134.

    Bernoulli, D. (1954). Exposition of a New Theory on the Measurement of Risk. Econometrica, 22(1), 23-36.

    Beyer, A. R., Fasolo, B., de Graeff, P. A., & Hillege, H. L. (2015). Risk Attitudes and Personality Traits Predict Perceptions of Benefits and Risks for Medicinal Products: A Field Study of European Medical Assessors. Value in Health, 18(1), 91-99.

    Bouguerra, S., Chelbi, A., & Rezg, N. (2012). A decision model for adopting an extended warranty under different maintenance policies. International Journal of Production Economics, 135(2), 840-849.

    Breinbjerg, J. (2017). Equilibrium arrival times to queues with general service times and non-linear utility functions. European Journal of Operational Research, 261(2), 595-605.

    Bruhin, A., Fehr‐Duda, H., & Epper, T. (2010). Risk and rationality: Uncovering heterogeneity in probability distortion. Econometrica, 78(4), 1375-1412.

    Carter, S., & McBride, M. (2013). Experienced utility versus decision utility: Putting the ‘S’ in satisfaction. The Journal of Socio-Economics, 42(Supplement C), 13-23.

    Chang, C.-T. (2007). Multi-choice goal programming. Omega, 35(4), 389-396.

    Chang, C.-T. (2010). An approximation approach for representing S-shaped membership functions. IEEE Transactions on Fuzzy Systems, 18(2), 412-424.

    Chang, C.-T. (2011). Multi-choice goal programming with utility functions. European Journal of Operational Research, 215(2), 439-445.

    Charnes, A., Cooper, W. W., & Ferguson, R. O. (1955). Optimal estimation of executive compensation by linear programming. Management science, 1(2), 138-151.

    Chen. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems, 114(1), 1-9.

    Chen. (2007). Preference Toward Risk, Risk Premium, Indifference Curves, and Reducing Risk. Retrieved, 11(14), 2014.

    Chen. (2011). Interval-valued fuzzy TOPSIS method with leniency reduction and an experimental analysis. Applied Soft Computing, 11(8), 4591-4606.

    Choudhary, D., & Shankar, R. (2014). A goal programming model for joint decision making of inventory lot-size, supplier selection and carrier selection. Computers & Industrial Engineering, 71, 1-9.

    Das Gupta, R. (2017). Risk-attitudes of the NSE 500 firms—Bowman's paradox and prospect theory perspectives. IIMB Management Review, 29(2), 76-89.

    De Bondt, W. F., & Makhija, A. K. (1988). Throwing good money after bad?: Nuclear power plant investment decisions and the relevance of sunk costs. Journal of Economic Behavior & Organization, 10(2), 173-199.

    Dimkov, T., Pieters, W., & Hartel, P. (2010). Laptop theft: a case study on the effectiveness of security mechanisms in open organizations. Paper presented at the Proceedings of the 17th ACM conference on Computer and communications security, 5, 10-34.

    Dymova, L., & Sevastjanov, P. (2012). The operations on intuitionistic fuzzy values in the framework of Dempster–Shafer theory. Knowledge-Based Systems, 35, 132-143.

    Fishburn, P. C. (1977). Mean-risk analysis with risk associated with below-target returns. The American Economic Review, 67(2), 116-126.

    Fishburn, P. C., & Kochenberger, G. A. (1979). Two‐Piece von Neumann‐Morgenstern Utility Functions. Decision Sciences, 10(4), 503-518.

    Gartner. (2017). Gartner Says Worldwide PC Shipments Declined 2.4 Percent in First Quarter of 2017. Gartner. Retrieved from
    http://www.gartner.com/newsroom/id/3676117

    Hillson, D., & Murray-Webster, R. (2004). Understanding and managing risk attitude.Paper presented at the Proceedings of 7th Annual Risk Conference, 2, 2-4.

    Ho, H.-P., Chang, C.-T., & Ku, C.-Y. (2015). House selection via the internet by considering homebuyers’ risk attitudes with S-shaped utility functions. European Journal of Operational Research, 241(1), 188-201.

    IDC. (2017). IDC Quarterly Personal Computing Device Tracker - PC Forecast, 2017Q3. IDC. Retrieved from
    https://www.idc.com/getdoc.jsp?containerId=prUS43147217

    Isik, A., & Yasar, M. F. (2015). Effects of Brand on Consumer Preferences: A study in Turkmenistan. Eurasian Journal of Business and Economics, 8(16), 139-150.

    Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica: Journal of the econometric society, 263-291.

    Ke, C.-K., & Chen, Y.-L. (2012). A message negotiation approach to e-services by utility function and multi-criteria decision analysis. Computers & Mathematics with Applications, 64(5), 1056-1064.

    Keeney, R. L., & Raiffa, H. (1976). Decision with multiple objectives: Wiley, New York.

    Keha, A. B., de Farias, I. R., & Nemhauser, G. L. (2004). Models for representing piecewise linear cost functions. Operations Research Letters, 32(1), 44-48.

    Kim, H.-W., Xu, Y., & Gupta, S. (2012). Which is more important in Internet shopping, perceived price or trust? Electronic Commerce Research and Applications, 11(3), 241-252.

    Lahno, A. M., Serra-Garcia, M., D’Exelle, B., & Verschoor, A. (2015). Conflicting risk attitudes. Journal of Economic Behavior & Organization, 118(Supplement C), 136-149.

    Liu, S., & Kuhn, R. (2010). Data loss prevention. IT professional, 12(2).

    Mekus, B. (1993). Laptop security. Internal Auditor, 50(1), 56-58.

    Microsoft. (2017). Windows-Minimum hardware requirements. Microsoft. Retrieved from https://docs.microsoft.com/zh-tw/windows-hardware/

    Murata, A., Moriwaka, M., & Ohta, Y. (2015). Irrational Properties of Risk Attitude in Decision Making. Procedia Manufacturing, 3(Supplement C), 4160-4167.

    Mustakerov, I., Borissova, D., & Bantutov, E. (2012). Multiple-choice decision making by multicriteria combinatorial optimization. Int. J. Advanced Modeling and Optimization, 14(3), 729-737.

    Paprottka, F. J., Machens, H.-G., & Lohmeyer, J. A. (2012). Third-degree burn leading to partial foot amputation – Why a notebook is no laptop. Journal of Plastic, Reconstructive & Aesthetic Surgery, 65(8), 1119-1122.

    Paulius, K., Napoles, P., & Maguina, P. (2008). Thigh burn associated with laptop computer use. Journal of burn care & research, 29(5), 842-844.

    Pennings, J. M., & Smidts, A. (2000). Assessing the construct validity of risk attitude. Management science, 46(10), 1337-1348.

    Qu, G., Brown, D., & Li, N. (2015). Distributed Greedy Algorithm for Satellite Assignment Problem with Submodular Utility Function∗∗The work is supported by Lincoln Laboratory with award #7000292526. IFAC-PapersOnLine, 48(22), 258-263.

    Rocha, R., Carmo, J., Goncalves, L., & Correia, J. (2009). An energy scavenging microsystem based on thermoelectricity for battery life extension in laptops. Paper presented at the Industrial Electronics, 12(10), 38-43.

    Rudoy, M. B. (2009). Multistage mean-variance portfolio selection in cointegrated vector autoregressive systems. Massachusetts Institute of Technology ,3, 21-26

    Smith, D. M. (2003). The cost of lost data. Graziadio Business Review. Retrieved from https://gbr.pepperdine.edu/2010/08/the-cost-of-lost-data/

    So, J. (2013). Joint utility function-based scheduling for two-way communication services in wireless networks. AEU - International Journal of Electronics and Communications, 67(9), 787-792.

    Taha, R. A., Choi, B. C., Chuengparsitporn, P., Cutar, A., Gu, Q., & Phan, K. (2007). Application of hierarchical decision modeling for selection of laptop. Engineering and technology, 6, 7-9

    Tampi, Y. A., Pangemanan, S. S., & Tumewu, F. J. (2016). Consumer Decision Making In Selecting Laptop Using Analytical Hierarchy Process (AHP) Method (Study: HP, Asus And Toshiba). Jurnal EMBA: Jurnal Riset Ekonomi, Manajemen, Bisnis dan Akuntansi, 4(1).
    Thaler, R. H., Tversky, A., Kahneman, D., & Schwartz, A. (1997). The effect of myopia and loss aversion on risk taking: An experimental test. The quarterly journal of economics, 112(2), 647-661.

    Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and uncertainty, 5(4), 297-323.

    Tzeng, G. (2012). Brand marketing for creating brand value based on a MCDM model combining DEMATEL with ANP and VIKOR methods. Expert Systems with Applications, 39(5), 5600-5615.

    Vanian, J. (2017). HP Inc. Recalls Over 100,000 Batteries. Fortune. Retrieved from http://fortune.com/2017/01/24/hp-battery-recall-fires/

    Von Neumann, J., & Morgenstern, O. (1945). Theory of games and economic behavior. NJ,United States: Princeton University Press.

    Wakker, P. P. (2010). Prospect theory: For risk and ambiguity: Cambridge university press.

    Wang, Z.-X., Niu, L.-L., Wu, R.-X., & Lan, J.-B. (2014). Multicriteria Decision-making Method Based on Risk Attitude under Interval-valued Intuitionistic Fuzzy Environment. Fuzzy Information and Engineering, 6(4), 489-504.

    Wen, F., Tao, M., He, Z., & Chen, X. (2013). The Impact of Investors’ Risk Attitudes on Skewness of return Distribution. Procedia Computer Science, 17(Supplement C), 664-670.

    Wong, I. A., Tseng, T.-H., Chang, A. W.-Y., & Phau, I. (2017). Applying consumer-based brand equity in luxury hotel branding. Journal of Business Research, 81(Supplement C), 192-202.

    Wood, D. A., & Khosravanian, R. (2015). Exponential utility functions aid upstream decision making. Journal of Natural Gas Science and Engineering, 27, 1482-1494.

    Zadeh, L. A. (1965). Information and control. Fuzzy sets, 8(3), 338-353.

    Zimmermann. (1991). Fuzzy sets and its application. Boston: Hingham.

    Zimmermann. (1996). J. 1996. Fuzzy set theory and its applications. Boston: Kulwer.

    無法下載圖示 本全文未授權公開
    QR CODE