研究生: |
蘇奕凌 Su, I-Ling |
---|---|
論文名稱: |
結合影像暨感測器資訊之三維模型重建研究 Based on the information of image and IMU sensor for 3D reconstruction |
指導教授: |
李忠謀
Lee, Chung-Mou |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 三維重建 、感測器 、運動恢復結構 、完全仿射不變特徵擷取 |
英文關鍵詞: | 3D Reconstruction, Sensor, Structure from Motion, Affine-SIFT |
DOI URL: | https://doi.org/10.6345/NTNU202202243 |
論文種類: | 學術論文 |
相關次數: | 點閱:298 下載:20 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
三維重建(3D Reconstruction)技術是利用多張多視角影像,將二維投影恢復物體三維空間之方法,類似人類雙目定位概念;從平面影像還原成立體模型如真實物體,表現出更豐富的細節資訊,而三維模型的呈現實現於生活廣泛之應用。
本研究以行動裝置為平台,對物體進行環繞拍攝取樣,透過運動恢復結構之影像演算法,無須事先校正相機參數,即計算出相機姿態與場景幾何相對關係;此外,加上感測器的地理資訊輔助,其強健穩定的特性,二次驗證定位方法,對齊校正座標,增加三維模型之精準度、提高運算效能。
3D reconstruction is the process of capturing the shape and appearance of real objects from the keyframe of different viewpoint. Through the projection of two-dimensional materials to restore three-dimensional space, which is similar to a binocular vision for the position. Nowadays, a 3D model is implemented in many applications, from an image reverts into a stereoscopic model as the original real object, that can be given more details of texture and structure.
First, based on the mobile device to scan around the object for video recording, using structure from motion(SfM) algorithm to calculate the relationship of camera position and scene geometric. Meanwhile, at the scanning stage, the sensor data are acquired along with tracks of features in the video. All these data are used to build a camera trajectory using above image techniques after scanning is completed. According to information support of sensor geography with robustness and stability, which can be demonstrated the second validation on positioning, not only enhance the accuracy of the 3D model, but also improve the efficiency.
[1] 3D Modeling. URL: https://en.wikipedia.org/wiki/3D_modeling.
[2] AutoDesk 123D Catch. URL: http://www.123dapp.com/catch
[3] Changchang, Wu. “VisualSFM: A Visual Structure from Motion System”. URL: http://ccwu.me/vsfm/
[4] David G. Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. In: International Journal of Computer Vision, 60, 2 (2004), pp. 91-110.
[5] M. A. Fischler and R. C. Bolles. “Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography”. In: Communications of the ACM, vol. 24, p. 381–395, 1981.
[6] Jebara, T, Azarbayejani, A and Pentland, A.“3D structure from 2D motion”. In: IEEE Signal Processing Magazine. Volume: 16, Issue: 3, May 1999.
[7] Meshlab. URL: http://meshlab.sourceforge.net/.
[8] Yasutaka Furukawa, Jean Ponce. “Accurate, Dense, and Robust Multi-View Stereopsis”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 32. Aug. 2010
[9] Y. Furukawa, B. Curless, S. M. Seitz and R. Szeliski. “Towards Internet-scale Multi-view Stereo”. In: Computer Vision and Pattern Recognition (CVPR), 2010.
[10] C. Wu. “Towards linear-time incremental structure from motion”. In: 3D Vision - 3DV. p. 127–134, 2013.
[11] M. Klopschitz, A. Irschara, G. Reitmayr and D. Schmalstieg. “Robust incremental structure from motion”. In: Fifth International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT). vol. 2, 2010.
[12] Tango. URL: https://www.google.com/atap/project-tango/.
[13] P. Tanskanen, K. Kolev, L. Meier, F. Camposeco, O. Saurer, and M. Pollefeys. “Live metric 3d reconstruction on mobile phones”. In: Computer Vision (ICCV), IEEE International Conference on pp. 65–72, 2013.
[14] Image processing. URL: https://en.wikipedia.org/wiki/Image_processing.
[15] J.M. Morel and G.Yu. “ASIFT: A New Framework for Fully Affine Invariant Image Comparison”. In: SIAM Journal on Imaging Sciences, vol. 2, issue 2, 2009.
[16] PoHan, Lee. “3D Model Reconstruction Based on Multiple View Image Capture”. In: National Digital Library of Theses and Dissertations in Taiwan. 2011.
[17] Sensor. URL: https://en.wikipedia.org/wiki/Sensor.
[18] Chao Jia, Brian L. Evans. “Online calibration and synchronization of cellphone camera and gyroscope”. In: IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2013.
[19] AGPS. URL: https://en.wikipedia.org/wiki/Assisted_GPS.
[20] How GPS Works on the iPhone. URL: https://www.lifewire.com/iphone-gps-set-up-1683393.
[21] GPS Accuracy. URL: http://www.gps.gov/systems/gps/performance/accuracy/.
[22] Frank van Diggelen and Per Enge. “The World's first GPS MOOC and Worldwide Laboratory using Smartphones”. URL: https://www.ion.org/publications/abstract.cfm?articleID=13079.
[23] Manolis I. A. Lourakis, Manolis I. A. Lourakis and Antonis A. Argyros. “The design and implementation of a generic sparse bundle adjustment software package based on the levenberg-marquardt algorithm”. In: Institute of Computer Science-FORTH, Heraklion,. Technical Report 340, 2004.
[24] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. “ An optimal algorithm for approximate nearest neighbor searching in fixed dimensions”. In: J. ACM 45, 891–923, 1998.
[25] M. A. Fischler and R. C. Bolles. “Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography”. In: Communications of the ACM, vol. 24, p. 381–395, 1981.
[26] K. Mikolajczyk and C. Schmid. “An affine invariant interest point detector”. In: The Seventh European Conference on on Computer Vision Part I, Copenhagen, 28-31 May 2002, 128-142.
[27] David R. Nilosek, Derek J. Walvoord and Carl Salvaggio. ”Assessing geoaccuracy of structure from motion point clouds from long-range image collections" In: Optical Engineering 53(11), 113112, 27 November 2014.
[28] K. Mikolajczyk and C. Schmid. “An affine invariant interest point detector”. In: The Seventh European Conference on on Computer Vision Part I, Copenhagen, 28-31 May 2002, 128-142.
[29] K. Mikolajczyk and C. Schmid. “Scale and affine invariant interest point detectors”. In: International Journal of Computer.Vision (IJC) V 60(1):63-86, 2004.
[30] J. Matas, O. Chum, M. Urban, and T. Pajdla. “Robust wide baseline stereo from maximally stable extremal regions”. In: Image and vision computing Volume 22. p.761-767, 2004.