研究生: |
王萱 Wang, Shiuan |
---|---|
論文名稱: |
光激發鈣鈦礦量子點塔米電漿雷射 Optical excitation Perovskite Quantum Dot Tamm plasmon laser |
指導教授: |
李亞儒
Lee, Ya-Ju |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 49 |
中文關鍵詞: | 金屬表面電漿效應 、光學塔米結構 、鈣鈦礦量子點 、分布式布拉格高反射鏡 |
英文關鍵詞: | Metal surface plasma effect, optical Tamm structure, Perovskite quantum dots, distributed Bragg reflector |
DOI URL: | http://doi.org/10.6345/NTNU202001319 |
論文種類: | 學術論文 |
相關次數: | 點閱:171 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以金屬/布拉格反射鏡構成的塔米電漿結構取代常見的兩對高反射率的分散式布拉格反射鏡構成的共振腔,塔米電漿結構擁有較好的侷限性,得到高品質因數的共振腔,而高量子效率與高激子束縛能(38 − 60 meV)的全無機鈣鈦礦量子點非常適合嵌入在塔米電漿侷域性強電場的空間中,藉此探討在室溫下塔米電漿子與鈣鈦礦量子點激子耦合,產生極化子凝聚效應之研究。使用μ-PL量測TP雷射結構樣品(Ag /鈣鈦礦量子點 /DBR),發現入射光從頂部Ag方向進入,從光譜圖發現在激發雷射閾值約為5.16 MW / cm2,波長約530-540 奈米處有隨機雷射的作用,而在波長約550奈米的地方,觀察到樣品有極化子發射的現象,但是因為極化子與光子模態不相符,因此沒有產生極化子雷射的作用。另外入射光從底部DBR方向進入,只有觀察到激發雷射閾值為〜0.897 MW / cm2,波長約530-540 奈米處有隨機雷射的產生,其原因為雷射激發源的入射方向更改為樣品底部時,Ag /鈣鈦礦量子點界面處的局部電場激發太弱,以至於其強度不足以激發極化子發射,另外將DBR與鈣鈦礦量子點製作成OLED元件,從光電流分析其亮度較一般玻璃基板製作的OLED其亮度提高3.8 %
In this thesis, we use Tamm plasmon structure composed of metal/Bragg mirrors in order to replace the resonant cavity which composed of two high reflectivity dispersed Bragg reflectors . The Tamm plasmon structure has good limitations can lead to a high Q-factor resonant cavity . The all-inorganic perovskite quantum dots provides high quantum efficiency and large binding energy (38 − 60 meV) . Which are very suitable for embedding into the space of strong localized electrical field of Tamm plasmon. This is to explore strong coupling between Tamm plasmon mode and perovskite excitons, and to discovery of new exciton-polariton effect. Use μ-PL to measure TP laser structure samples (Ag/Perovskite quantum dots/DBR), Incident direction of pumping laser, i.e. from the top side (Ag) of the sample. I observe several spectral spikes in the wavelength regime of 𝛌 =530-540 nm, due probably to the aggregation of perovskite QDs which scatters emitted photons to stimulate random lasing actions with pumping threshold of ~5.16 MW/cm2, also observe the possible polariton emissions at 𝛌 ~ 550 nm on our samples, but there is no polariton lasing actions due probably to the large detuning of exciton and photonics mode. When change the incident direction of pumping laser, i.e. from the bottom side (DBR) of the sample. Again, the random lasing actions with the pumping threshold of ~0.897 MW/cm2 can still be observed in 𝛌 =530-540 nm; however, there is no occurrence of polariton emission in 𝛌 ~ 550 nm. Because the localized electrical field at the Ag/perovskites QDs interface was weakly excited, and hence its intensity is insufficient to stimulate polariton emissions. In addition, DBR and perovskite quantum dots are made into OLED components, according to the analysis of photocurrent, its brightness is increased by 3.8% compared with that of OLED made of glass substrate.
[1]Barnes, William L., Alain Dereux, and Thomas W. Ebbesen. "Surface plasmon subwavelength optics." nature 424.6950 (2003): 824-830.
[2]Kasprzak, Jacek, et al. "Bose–Einstein condensation of exciton polaritons." Nature 443.7110 (2006): 409-414.
[3]Bajoni, Daniele, et al. "Polariton light-emitting diode in a GaAs-based microcavity." Physical Review B 77.11 (2008): 113303.
[4]Schneider, Christian, et al. "An electrically pumped polariton laser." Nature 497.7449 (2013): 348-352.
[5]Kavokin, A. V., I. A. Shelykh, and G. Malpuech. "Lossless interface modes at the boundary between two periodic dielectric structures." Physical Review B 72.23 (2005): 233102.
[6]Kaliteevski, M., et al. "Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror." Physical Review B 76.16 (2007): 165415.
[7]Symonds, C., et al. "Emission of Tamm plasmon/exciton polaritons." Applied Physics Letters 95.15 (2009): 151114.
[8]Gazzano, O., et al. "Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission." Physical review letters 107.24 (2011): 247402.
[9]Du, Wenna, et al. "Strong exciton–photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity." Acs Photonics 5.5 (2018): 2051-2059.
[10]Kao, Tsung Sheng, et al. "Localized surface plasmon for enhanced lasing performance in solution-processed perovskites." Optics Express 24.18 (2016): 20696-20702.
[11]Rakher, M. T., et al. "Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots." Physical review letters 102.9 (2009): 097403.
[12]Pelton, Matthew, et al. "Efficient source of single photons: a single quantum dot in a micropost microcavity." Physical review letters 89.23 (2002): 233602.
[13]Dousse, Adrien, et al. "Ultrabright source of entangled photon pairs." Nature 466.7303 (2010): 217-220.
[14]Symonds, Clementine, et al. "Confined Tamm plasmon lasers." Nano letters 13.7 (2013): 3179-3184.
[15]Lundt, Nils, et al. "Room-temperature Tamm-plasmon exciton-polaritons with a WSe 2 monolayer." Nature communications 7.1 (2016): 1-6.
[16]Liu, Xiaoze, et al. "Strong light–matter coupling in two-dimensional atomic crystals." Nature Photonics 9.1 (2015): 30-34.
[17]Protesescu, Loredana, et al. "Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut." Nano letters 15.6 (2015): 3692-3696.Sheppard, C.J.R. (1995). "Approximate calculation of the reflection coefficient from a stratified medium". doi:10.1088/0963-9659/4/5/018.
[18]Zhang, Ting, et al. "Full-spectra hyperfluorescence cesium lead halide perovskite nanocrystals obtained by efficient halogen anion exchange using zinc halogenide salts." CrystEngComm 19.8 (2017): 1165-1171.
[19]李正中。薄膜光學與鍍膜技術第八版。藝軒圖書出版社。2016