研究生: |
許永 HSU, Yung |
---|---|
論文名稱: |
羧酸型共聚物:合成與對於砂漿中氧化石墨烯分散性的影響 Carboxylate Dispersant: Synthesis and its Effects on the Dispersion of Graphene Oxide in Mortars |
指導教授: |
許貫中
Hsu, Kung-Chung 王禎翰 Wang, Jeng-Han |
口試委員: | 王曄 黃中和 許貫中 王禎翰 |
口試日期: | 2021/09/30 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 羧酸系共聚物 、合成 、氧化石墨烯 、分散 、砂漿 、機械性質 |
英文關鍵詞: | carboxylate copolymer, synthesis, graphene oxide, dispersion, mortar, mechanical property |
DOI URL: | http://doi.org/10.6345/NTNU202101650 |
論文種類: | 學術論文 |
相關次數: | 點閱:213 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇研究目標是合成一種羧酸系兩性離子型共聚物PDA(聚(N,N,N-二甲基((羧酸)丙烯醯氧基乙基)丁酸鈉-丙烯醯胺),作為共聚物用來改善氧化石墨烯在水泥基材料的分散性以提升試體的機械性質。先使用馬來酸酐和N,N-二甲基胺乙醇合成DME(二甲基胺乙基氧羰基丙烯酸),再與4-氯丁酸反應得到單體DCB(N,N,N-二甲基((羧酸)丙烯醯氧基乙基)丁酸鈉),最後使用過硫酸銨(APS)為起始劑,與不同比例丙烯醯胺(AM)經由自由基聚合反應合成得到兩性離子型共聚物PDA,PDA經由FTIR和1H-NMR光譜鑑定其結構,以GPC測定其分子量。另外,使用Hummers法將石墨烯氧化成氧化石墨烯(GO)。
將PDA加入含氧化石墨烯的水溶液中,透過沉降體積、粒徑分布、界達電位與黏度實驗測試,探討PDA對於水溶液中GO的分散效果。測試結果顯示,在人工孔隙溶液中共聚物對於GO的沉降時間隨著AM/DCB比例的增加呈現先增後減的趨勢,PDA在AM/DCB=4時有最長的沉降時間;另外,GO的沉降時間隨著PDA分子量的上升或添加量的增加而增長,因此PDA41添加量為20 wt%時,GO的沉降時間為最長達65小時,此時溶液的黏度為最低(2.88 mPa‧s),溶液中GO的D50粒徑為最小、負界達電位為最大,分別為287 nm和-28.2 mV。因此在所合成的共聚物中PDA41有最好的分散效果。將PDA41加入含氧化石墨烯的水泥砂漿中,測試砂漿試體的抗壓強度與抗彎強度。結果顯示,添加20 wt%的PDA41與0.05 wt%的GO的水泥砂漿試體,在28天的抗壓強度為34.7 MPa,抗彎強度為6.73 MPa,與未添加共聚物的控制組相比提升了57%與99%。
This thesis is to synthesize a zwitterionic carboxylate copolymer PDA (Poly(N,N,N-dimethyl((carboxylate) acryloyloxyethyl) butyrate-co-acrylamide)) as a dispersant to improve the dispersion of graphene oxide (GO) in cement-based materials and the mechanical properties of mortar. First, maleic anhydride and N,N-dimethylaminoethanol was used to synthesize DME(3-((2-(dimethylamino)ethoxy)carbonyl)acrylic acid). Then, DME was reacted with sodium 4-chlorobutyric acid to obtain the monomer DCB(N,N,N-dimethyl((carboxylate) acryloyloxyethyl) butyrate). Thereafter, PDA copolymer was prepared from DCB and acrylamide(AM) through free radical polymerization by using ammonium persulphate as an initiator. FT-IR and 1H-NMR were used to identify the structure of PDA, and GPC was used to determine the molecule weight of the prepared polymer. Besides, graphene oxide was prepared from graphene using the Hummers method.
The dispersion property of PDA was evaluated through the sedimentation test, size distribution, zeta potential and viscosity measurements. The results indicated the sedimentation time of GO in the artificial pore solution increased with AM/DCB ratio of polymer first, reached a maximum value at AM/DCB=4, and then decreased afterwards. Increase of the molecular weight of PDA or polymer dosage increased the sedimentation time of GO in the artificial pore solution. Apparently, PDA41 which has AM/DCB=4 and the highest molecular weight showed the best performance. GO in the pore solution with 20 wt% PDA41 was found to have the smallest particle size and highest absolute value of zeta potential of GO, and longest sedimentation time. Finally, the compressive and flexural strength of mortar with 0.05 wt% of graphene oxide and 20 wt% of PDA41 at 28days were 34.7 MPa and 6.73 MPa, which were 57% and 99% increased relative to the mortar without any dispersant or GO present.
1. Wonbong Choi, I.L., Raghunandan Seelaboyina & Yong Soo Kang, Synthesis of Graphene and Its Applications: A Review. Critical Reviews in Solid State and Materials Sciences, 2010. 35(1): p. 52-71.
2. K. S. Novoselov, A.K.G., S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films. SCIENCE, 2004. 306(5696): p. 666-669.
3. Xin Jiat Lee, B.Y.Z.H., Kar Chiew Lai, Lai Yee Lee, Suyin Gan, Suchithra Thangalazhy-Gopakumar, Sean Rigby, Review on graphene and its derivatives: Synthesis methods and potential industrial implementation. Journal of the Taiwan Institute of Chemical Engineers, 2019. 98: p. 163-180.
4. Deji Akinwande, L.T., Qingkai Yu, Xiaojing Lou, Peng Peng, Duygu Kuzum, Large-Area Graphene Electrodes: Using CVD to facilitate applications in commercial touchscreens, flexible nanoelectronics, and neural interfaces. IEEE Nanotechnology Magazine, 2015. 9(3): p. 6-14.
5. Randviir, E.P., D.A.C. Brownson, and C.E. Banks, A decade of graphene research: production, applications and outlook. Materials Today, 2014. 17(9): p. 426-432.
6. Cohen-Tanugi, D. and J.C. Grossman, Water desalination across nanoporous graphene. Nano Lett, 2012. 12(7): p. 3602-8.
7. Yifeng Fu, J.H., Ya Liu, Shujing Chen, Abdelhafid Zehri, Majid Kabiri Samani, Nan Wang, Yuxiang Ni, Yan Zhang, Zhi-Bin Zhang, Qianlong Wang, Mengxiong Li, Hongbin Lu, Marianna Sledzinska, Clivia M. Sotomayor Torres, Sebastian Volz, Alexander A. Balandin, Xiangfan Xu, Graphene related materials for thermal management. 2D Materials, 2019. 7(1).
8. Wei Yu, H.X., Luqiao Yin, Junchang Zhao, Ligang Xia, Lifei Chen, Exceptionally high thermal conductivity of thermal grease: Synergistic effects of graphene and alumina. International Journal of Thermal Sciences, 2015. 91: p. 76-82.
9. Russell Kai Liang Tan, S.P.R., Niloofar Hashemi, Deepak George Thomas, Emrah Kavak, Reza Montazami, Nicole N. Hashemi, Graphene as a flexible electrode: review of fabrication approaches. Journal of Materials Chemistry A, 2017. 5(34): p. 17777-17803.
10. Ke, Q. and J. Wang, Graphene-based materials for supercapacitor electrodes – A review. Journal of Materiomics, 2016. 2(1): p. 37-54.
11. H. Yang, S.K., A. S. Pandian, J. H. Jang, Y. S. Lee, W. Lu, Graphene supercapacitor with both high power and energy density. Nanotechnology, 2017. 28(44): p. 445401.
12. Mengyao Zhong, D.X., Xuegong Yu, Kun Huang, Xuemei Liu, Yiming Qu, Yang Xu, Deren Yang, Interface coupling in graphene/fluorographene heterostructure for high-performance graphene/silicon solar cells. Nano Energy, 2016. 28: p. 12-18.
13. Yi, M. and Z. Shen, A review on mechanical exfoliation for the scalable production of graphene. Journal of Materials Chemistry A, 2015. 3(22): p. 11700-11715.
14. Wucong Wang, Y.W., Yahui Gao, Yaping Zhao, Control of number of graphene layers using ultrasound in supercritical CO2 and their application in lithium-ion batteries. The Journal of Supercritical Fluids, 2014. 85: p. 95-101.
15. K. M. Al-Shurman, H.N. CVD Graphene Growth Mechanism on Nickel Thin Films. in COMSOL Conference. 2014. Boston.
16. Yi Zhang, L.Z., and Chongwu Zhou, Review of Chemical Vapor Deposition of Graphene and Related Applications. Acc. Chem. Res. 2013, 46, 10, 2329–2339.
17. D. V. Kosynkin, A.L.H., A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 2009. 458(7240): p. 872-6.
18. Morimoto, N., T. Kubo, and Y. Nishina, Tailoring the Oxygen Content of Graphite and Reduced Graphene Oxide for Specific Applications. Sci Rep, 2016. 6: p. 21715.
19. Ronghua Wang, Y.W., Chaohe Xu, Jing Sun, Lian Gao, Facile one-step hydrazine-assisted solvothermal synthesis of nitrogen-doped reduced graphene oxide: reduction effect and mechanisms. RSC Adv., 2013. 3(4): p. 1194-1200.
20. Tan, H., D. Wang, and Y. Guo, Thermal Growth of Graphene: A Review. Coatings, 2018. 8(1).
21. Zaretski, A.V. and D.J. Lipomi, Processes for non-destructive transfer of graphene: widening the bottleneck for industrial scale production. Nanoscale, 2015. 7(22): p. 9963-9.
22. Bhagya Lakshmi Dasari, J.M.N., Dermot Brabazon, Sumsun Naher, Graphene and derivatives – Synthesis techniques, properties and their energy applications. Energy, 2017. 140: p. 766-778.
23. Brisebois, P.P. and M. Siaj, Harvesting graphene oxide – years 1859 to 2019: a review of its structure, synthesis, properties and exfoliation. Journal of Materials Chemistry C, 2020. 8(5): p. 1517-1547.
24. Singh, R.K., R. Kumar, and D.P. Singh, Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Advances, 2016. 6(69): p. 64993-65011.
25. Andrew T. Smith, A.M.L., Songshan Zeng, Bin Liu, Luyi Sun, Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science, 2019. 1(1): p. 31-47.
26. Xiao-Ming Huang, L.-Z.L., Si Zhou, Ji-Jun Zhao, Physical properties and device applications of graphene oxide. Frontiers of Physics, 2020. 15(3).
27. Thomas M. McCoy, G.T., Boon Mian Teo, Rico F. Tabor, Graphene oxide: a surfactant or particle? Current Opinion in Colloid & Interface Science, 2019. 39: p. 98-109.
28. Wei, J., T. Vo, and F. Inam, Epoxy/graphene nanocomposites – processing and properties: a review. RSC Advances, 2015. 5(90): p. 73510-73524.
29. Liyan Liu, R.Z., Ying Liu,Wei Tan, Guorui Zhu, Insight into hydrogen bonds and characterization of interlayer spacing of hydrated graphene oxide. J Mol Model, 2018. 24(6): p. 137.
30. Madeline Shuhua Goh, A.B., Adriano Ambrosi, Zdenek Sofer and Martin Pumera, Chemically-modified graphenes for oxidation of DNA bases: analytical parameters. Analyst, 2011. 136(22): p. 4738-44.
31. Tour, A.M.D.a.J.M., Mechanism of Graphene Oxide Formation. ACS Nano 2014, 8, 3, 3060–3068, 2014.
32. Aïtcin, P.C., Portland cement, in Science and Technology of Concrete Admixtures. 2016. p. 27-51.
33. Chemical Admixture-Cement Interactions: Phenomenology and Physico-chemical Concepts. Cement and Concrere Composires, 1998. 20: p. 87-101.
34. Li Zhao, X.G., Luguang Song, Yang Song, Guozhong Dai, Jiaping Liu, An intensive review on the role of graphene oxide in cement-based materials. Construction and Building Materials, 2020. 241.
35. Cheng Zhou, F.L., Jie Hu, Mengmeng Ren, Jiangxiong Wei, Qijun Yu, Enhanced mechanical properties of cement paste by hybrid graphene oxide/carbon nanotubes. Construction and Building Materials, 2017. 134: p. 336-345.
36. A. Mohammed, J.G.S., W. H. Duan, A. Nazari, Incorporating graphene oxide in cement composites: A study of transport properties. Construction and Building Materials, 2015. 84: p. 341-347.
37. A. Mohammed, J.G.S., W. H. Duan, A. Nazari, Graphene Oxide Impact on Hardened Cement Expressed in Enhanced Freeze–Thaw Resistance. Journal of Materials in Civil Engineering, 2016. 28(9).
38. Shenghua Lv, J.L., Ting Sun, Yujuan Ma, Qingfang Zhou,, Effect of GO nanosheets on shapes of cement hydration crystals and their formation process. Construction and Building Materials, 2014. 64: p. 231-239.
39. Wu-Jian Long, J.-J.W., Hongyan Ma and Feng Xing, Dynamic Mechanical Properties and Microstructure of Graphene Oxide Nanosheets Reinforced Cement Composites. Nanomaterials (Basel), 2017. 7(12).
40. Haibin Yang, M.M., Hongzhi Cui, Ningxu Han, Experimental study of the effects of graphene oxide on microstructure and properties of cement paste composite. Composites Part A: Applied Science and Manufacturing, 2017. 102: p. 263-272.
41. Xiangyu Li, Y.M.L., Wen Gui Li, Chen Yang Li, Jay G. Sanjayan, Wen Hui Duan, Zongjin Li, Effects of graphene oxide agglomerates on workability, hydration, microstructure and compressive strength of cement paste. Construction and Building Materials, 2017. 145: p. 402-410.
42. Matan Birenboim, R.N., Amr Alatawna, Matat Buzaglo, Gal Schahar, Jounghoon Lee, Gunsoo Kim, Alva Peled, Oren Regev,, Reinforcement and workability aspects of graphene-oxide-reinforced cement nanocomposites. Composites Part B: Engineering, 2019. 161: p. 68-76.
43. Qureshi, T.S. and D.K. Panesar, Impact of graphene oxide and highly reduced graphene oxide on cement based composites. Construction and Building Materials, 2019. 206: p. 71-83.
44. Wu-Jian Long, D.Z., Hua-bo Duan, Ningxu Han, Feng Xing, Performance enhancement and environmental impact of cement composites containing graphene oxide with recycled fine aggregates. Journal of Cleaner Production, 2018. 194: p. 193-202.
45. Shenghua Lv, Y.M., Chaochao Qiu, Ting Sun, Jingjing Liu, Qingfang Zhou, Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Construction and Building Materials, 2013. 49: p. 121-127.
46. Qin Wang, J.W., Chun-xiang Lu, Bo-wei Liu, Kun Zhang, Chong-zhi Li, Influence of graphene oxide additions on the microstructure and mechanical strength of cement. New Carbon Materials, 2015. 30(4): p. 349-356.
47. Hongzhi Cui, X.Y., Luping Tang, Feng Xing, Possible pitfall in sample preparation for SEM analysis - A discussion of the paper “Fabrication of polycarboxylate/graphene oxide nanosheet composites by copolymerization for reinforcing and toughening cement composites” by Lv et al. Cement and Concrete Composites, 2017. 77: p. 81-85.
48. Lin, C., W. Wei, and Y.H. Hu, Catalytic behavior of graphene oxide for cement hydration process. Journal of Physics and Chemistry of Solids, 2016. 89: p. 128-133.
49. Xiangyu Li, C.L., Yanming Liu, Shu Jian Chen, C. M. Wang, Jay G. Sanjayan & Wen Hui Duan, Improvement of mechanical properties by incorporating graphene oxide into cement mortar. Mechanics of Advanced Materials and Structures, 2017. 25(15-16): p. 1313-1322.
50. Samuel Chuah, Z.P., Jay G. Sanjayan, Chien Ming Wang, Wen Hui Duan, Nano reinforced cement and concrete composites and new perspective from graphene oxide. Construction and Building Materials, 2014. 73: p. 113-124.
51. Min Wang, R.W., Hao Yao, Zhujun Wang and Shuirong Zheng, Adsorption characteristics of graphene oxide nanosheets on cement. RSC Advances, 2016. 6(68): p. 63365-63372.
52. Du, H., H.J. Gao, and S.D. Pang, Improvement in concrete resistance against water and chloride ingress by adding graphene nanoplatelet. Cement and Concrete Research, 2016. 83: p. 114-123.
53. Shama Parveen, S.R., Raul Fangueiro, Maria Conceição Paiva, Microstructure and mechanical properties of carbon nanotube reinforced cementitious composites developed using a novel dispersion technique. Cement and Concrete Research, 2015. 73: p. 215-227.
54. Xiangyu Li, A.H.K., Chenyang Li, Yanming Liu, Hongsen He, Jay G. Sanjayan, Wen Hui Duan, Incorporation of graphene oxide and silica fume into cement paste: A study of dispersion and compressive strength. Construction and Building Materials, 2016. 123: p. 327-335.
55. Zeyu Lu, A.H., Chao Ning, Hongyu Shao, Ran Yin, Zongjin Li, Steric stabilization of graphene oxide in alkaline cementitious solutions: Mechanical enhancement of cement composite. Materials & Design, 2017. 127: p. 154-161.
56. Li Zhao, X.G., Chuang Ge, Qi Li, Liping Guo, Xin Shu, Jiaping Liu, Mechanical behavior and toughening mechanism of polycarboxylate superplasticizer modified graphene oxide reinforced cement composites. Composites Part B: Engineering, 2017. 113: p. 308-316.
57. Li Zhao, X.G., Chuang Ge, Qi Li, Liping Guo, Xin Shu, Jiaping Liu, Investigation of the effectiveness of PC@GO on the reinforcement for cement composites. Construction and Building Materials, 2016. 113: p. 470-478.
58. Li Zhao, X.G., Yuanyuan Liu, Chuang Ge, Zhongtao Chen, Liping Guo, Xin Shu, Jiaping Liu, Investigation of dispersion behavior of GO modified by different water reducing agents in cement pore solution. Carbon, 2018. 127: p. 255-269.
59. Qiao M, R.Q., Liu J, Impact of Linkage Group in Comb-like Polymer on Dispersion Properties of Cement Pastes. Polymers and Polymer Composites, 2013. 21(1): p. 43-50.
60. H. Uchikawa, S.H.a.D.S., The role of steric repulsive force in the dispersion of cement particles in fresh paste prepared with organic admixture. Cement and Concrete Research, 1997. 27(1): p. 37-50.
61. V. Ramakrishnan , P., S.G. Malghan, The stability of alumina-zirconia suspensions. Colloids and Surfaces A: Physicocheraical and Engineering Aspects 133, 1998: p. 135-142.
62. Frank O.H. Pirrung, P.H.Q., and Clemens Auschra, Wetting and Dispersing Agents. Chimia, 2002. 56: p. 170–176.
63. Horn, R.G., Surface Forces and Their Action in Ceramic Materials. J. Am. Cerum. SOC., 1990. 73(5): p. 1117-1135.
64. Lewis, J.A., Organic Processing Additives. Encyclopedia of Materials: Science and Technology, 2001: p. 6556-6560.