簡易檢索 / 詳目顯示

研究生: 姚秋蓮
論文名稱: 氧化鋅奈米線與橫向磊晶成長的氮化鎵之拉曼光譜研究
Optical Investigation of ZnO Nanorods and GaN Growth by Epitaxial Lateral Overgrowth
指導教授: 劉祥麟
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 85
中文關鍵詞: 氧化鋅氮化鎵拉曼光譜
論文種類: 學術論文
相關次數: 點閱:263下載:26
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們探討氧化鋅奈米柱及在載流氣體分別為氫氣、氮氫氣混和及純氮氣下,以氫化物氣相磊晶成長( hydride vapor phase epitaxy : HVPE)氮化鎵厚膜在異質基板上,並使用磊晶側向成長法 (epitaxial lateral overgrowth : ELO )成長的氮化鎵之表面結構與光譜特性,分析型態對光譜的影響。
    在氧化鋅奈米柱的研究中,由拉曼散射光譜的分析,我們發現奈米柱的拉曼活性振動模與奈米線相近,綠光二極體基板上的氧化鋅奈米柱的光譜螢光訊號太強掩蓋住氧化鋅的訊號;藍光二極體基板上的氧化鋅奈米柱光譜E2(high) 振動模式 438 cm –1有比較強的譜峰,顯示氧化鋅的結晶品質;光譜上未顯示583 cm –1 峰,說明樣品具有低濃度的氧空缺。
    在不同載流氣體下成長的氮化鎵之拉曼散射光譜研究中,我們發現其拉曼活性振動模在平面與橫截面明顯不同,平面的 E2 (high) 振動模強度最大,橫截面則以A1(TO) 振動模強度最大;E2 (high) 峰的變化顯現應力的影響。經由計算雙軸的應力可得在氫氣中的應力比較大約0.81 GPa;在氮氫混和中約0.36~0.51 GPa;在氮氣中則最小為0.38 GPa,皆為壓力的作用。
    我們並以電漿子耦合效應的 Impurity-Induced Fröhlich(I I F)機制模擬,在氫氣中的氮化鎵電漿濃度為1 × 1017 cm-3;電漿阻尼常數為150 cm-1;晶格阻尼常數受位置影響約為7~12 cm-1。在氮氫混和中的氮化鎵電漿濃度為1 × 1017 cm-3;電漿阻尼常數為200 cm-1;晶格阻尼常數為7 cm-1。在氮氣中無明顯數據可模擬。

    We present the results of the Raman-scattering measurements of ZnO nanorods by self-catalyzed vapor-liquid-solid(VLS)process and GaN microstructures grown by epitaxial lateral overgrowth(ELO)using hydride vapor phase epitaxy(HVPE).
    The Raman spectrum of the ZnO nanorods exhibit three sharp phonon peaks at ~ 101,379, and 438 cm-1, corresponding to symmetries E2(low), A1(TO), and E2(high), respectively . It reveals a low concentration of oxygen vacancies in these ZnO nanorods and their high optical quality.
    By varying the carrier gas composition (hydrogen versus nitrogen), the growth mode of GaN microstructure can be modified during deposition. The Raman-active E2 (high) phonon is found to gauge the strain distributions of the sample, which gives evidence of the biaxial strain of -0.81 GPa, -0.51GPa, and -0.38 GPa in hydrogen, 1:1 mixed hydrogen/nitrogen, and nitrogen content. Moreover, the peak shift and the broadening of the linewidths as well as asymmetric shape observed in A1(LO) phonon agree with those calculated on the basis of the LO phonon-plasmon model, suggesting a low carrier density of 1 × 1017 cm-3 in hydrogen and 1:1 mixed hydrogen/nitrogen content.

    第一章 緒論 ………………………………………………………… 1 第二章 研究背景 …………………………………………………… 4 2-1 半導體的成因及特性 ……………………………………… 4 2-2型態的成因 …………………………………………………… 6 2-2-1氧化鋅奈米柱製作方法……………………………… 6 2-2-2 氮化鎵製作方法 ………………………………… 7 第三章 實驗儀器設備及其基本原理 …………………………… 13 3-1雷射拉曼散射光譜儀 ……………………………………… 13 3-2拉曼散射原理 ……………………………………………… 14 3-3光譜量測原理 ……………………………………………… 15 3-3-1羅侖茲模型…………………………………………… 15 3-3-2 Fano模型 …………………………………………… 15 第四章 樣品的結構、製程與基本特性…………………………… 21 4-1 樣品的結構 ………………………………………………… 21 4-2 樣品的製程 ………………………………………………… 21 4-3 樣品的群論計算……………………………………………… 25 4-4 樣品的基本特性 …………………………………………… 26 第五章 實驗結果與討論 …………………………………………… 46 5-1微觀雷射拉曼散射光譜……………………………………… 46 5-2氮化鎵的應變與應力 ………………………………………… 52 5-3電漿子耦合效應 ……………………………………………… 54 第六章 結論與未來展望 …………………………………………… 84

    [1] C. Geng, Y. Jiang, Y. Yao, X. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz, and S. T. Lee, Adv. Funct. Mater., 14, 589(2004).
    [2] C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C. J. Huang, Y. K. Tseng, and I. C. Chen, Journal of Electrochemical Society, 152(5) G378-G381 (2005).
    [3] http://www.bhkaec.org.hk/bookman/hk24.htm
    [4] J. Wu and S. Liu, J. Phys. Chem. B, 106, 9546(2002).
    [5] Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, Appl. Phys. Lett. Vol. 76, 2011(2000).
    [6] L. Vayssieres, Adv. Mater.(Weinheim, Ger.), 15, 464(2003).
    [7] Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren, and P. H. Fleming, Appl. Phys. Lett. 81, 3046(2002).
    [8] W. I. Park, Y. H. Jun, S. W. Jung, and G. –C. Yi, Appl. Phys. Lett. 82, 964(2003).
    [9] W. I. Park,S. Muthukumar, H. Sheng, J. Zhong, Z. Zhang, N. W. Emanaetoglu, and Y. Lu, IEEE Trans. Nanotechnol, 2, 50 (2003).
    [10] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, Adv. Mater.(Weinheim, Ger.), 13, 113(2000).
    [11] C. L. Hsu, S. J. Chang, Y. K. Tseng, C. J. Huang, H. M. Cheng, and I. C. Chen, IEEE Trans. Nanotechnol, Submitted.
    [12] Y. H. Tang, T. K. Sham, A. Jürgensen, Y. F. Hu, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 80, 3709(2002).
    [13] http://www2.nsysu.edu.tw/OEMDP/ganrod.htm
    [14] C. L. Hsiao, L. W. Tu, T. W. Chi, J. F. Wu, I. Lo, C. F. Hu, T. T. Sheng, and K. Y. Hsieh, “ Analyses of Self-Assembled GaN Nanorods on Si (111) Substrate”.
    [15] E. Kurtz et al., J. Cryst. Growth 214/215, P.712 (2000).
    [16] J.A. Freitas Jr. et al., J. Cryst. Growth 231, P.322 (2001).
    [17] Chiao-Yi Hwang, Ph. D. Mechenics and Materials Science, Rutgers University, Piscatawa, NJ (1995).
    [18]http://www2.nsysu.edu.tw/OEMDP/ganrod.htmhhttp://www.nsc.gov.tw/_newfiles/popular_science.asp?add_year=2003&popsc_aid=112
    [19] H. Morkoc and S. N. Mohammad, Science 267, 51(1995).
    [20]張靜宜, “側向磊晶技術成長氮化鎵之研究”, 成功大學材料科學及工程學研究所碩士論文, 2005.
    [21] S. Porowski, J. Cryst. Growth 189-190, 153 (1998).
    [22] Hai-Ping Liu, Jeng-Dar Tsay, Wen-Yueh Liu , Yih-Der Gua, Jung Tsung Hsu, In-Gann Chen, The Growth Mechanism of GaN Grown by Hydride Vapor Phase Epitaxy(2002).
    [23] 林大鈞,國立台灣師範大學物理研究所碩士論文,93年1月。
    [24] 許正良,工業技術學院,「A Two-step Oxygen Injection Process for Growing ZnO Nanorods」
    [25]廖偉材, “氮化鋁鎵/氮化鎵超晶格原子層磊晶之研究”, 逢甲大學材料科學研究所碩士論文, 2002。
    [26] 車吉平,國立台灣師範大學物理研究所碩士論文,93年6月。
    [27] D. Kapolnek, S. Keller, R. Vetury, R. D. Underwood , P. Kozodoy, S. P. DenBaars, and U. K. Mishra, Appl. Phys. Lett. 71, 1204 (1997).
    [28] N. O. Hyun, M. D. Bremser, T. S. Zheleva, and R. F. Davis, Appl. Phys. Lett. 71, 2638 (1997).
    [29] Larry A. Nagahara, Islamshah Amlani, Justin Lewenstein, and Raymond K. Tsui, Appl. Phys. Lett. 80, 3826 (2002).
    [30] H. Kleinpoppen and M. R. C. McDowell, Electron and Photon Interactions With Atoms (Plenum Press, New York, 1976).
    [31] http://ppprs1.phy.tu-dresden.de/~rosam/kurzzeit/main/fano/
    [32] U. Fano, Phys. Rev. 124, 1866 (1961).
    [33]http://www.distinction.ch.ntu.edu.tw/content/plan3/endreport3-89.htm
    [34] http://www.nda.ac.jp/cc/mse/_development/Abe/crystal.html
    [35] http://www.opt.ees.saitama-u.ac.jp/~zyoho/t-oka/epitaxy.html
    [36] http://wolf.ifj.edu.pl/phonon/Public/Xgan.html
    [37] J. M. Zhang, T. Ruf, M. Cardona, O. Ambacher, M. Stutzmann, J.-M.Wagner, and F. Bechstedt, Phys. Rev. B 56, 14399 (1997).
    [38] K. Mcguire, Z. W. Pan, Z. L. Wang, D. Milkie, J. Menendez, and A. M. Rao, J. Nanoteoh., Vol 2, No. 5 (2002).
    [39] H.-P. Liu , Jenq-Dar Tsayb, Wen-Yueh Liub, Yih-Der Guob,Jung Tsung Hsub, and In-Gann Chena, Journal of Crystal Growth 260 ,79–84 (2004).
    [40] C. Kisielowski, J. Krueger, S. Ruvimov, T. Suski, J. W. Ager, E. Jones, Z. Lilienthal-Weber, M. Rubin, E. K. Weber, M. D. Bremser, and R. F. Davos, Phys. Rev. B 54, 17745(1996).
    [41] M.Leszczynski, H. Teusseyre, T. Suski, I. Grzegory, M. Bockowski, J. Jun, S. Porowski, K. Pakula, and J. M. Baranowski. (private communication)
    [42]L.Pauling,The Chemical Bond ~Cornell University Press,Ithaca,1967.
    [43] J. M. Calleja and M. Cardona, Phys. Rev. B 16, 3753 (1977).
    [44] F. Decremps, J. Pellicer-Porres, A. M. Saitta, J.-C. Chervin, and A. Polian, Phys. Rev. B 65, 092101(2002).
    [45] L. X. Xu, S. P. Lau, J. S. Chen, G. Y. Chen, and B. K. Tay, J. Cryst. Growth 223, 201(2001).
    [46] S. C. Lyu, Y. Zhang, H. Ruh, H.-J. Lee, H.-W. Shim, E.-K. Suh, and C. J. Lee, Chem. Phys. Lett. 363, 134 (2002).

    QR CODE