簡易檢索 / 詳目顯示

研究生: 張瑋宸
Chang, Wei-Chen
論文名稱: 早中全新期臺灣南部恆春地區之古環境:微孔珊瑚骨骼之穩定碳氧同位素組成及Sr/Ca比值紀錄
Early Middle Holocene paleoenvironment of Hengchun area, southern Taiwan inferred from the stable carbon and oxygen isotope composition and Sr/Ca ratios of coral Proites skeleton
指導教授: 米泓生
Mii, Horng-Sheng
王士偉
Wang, Shih-Wei
口試委員: 李孟陽
Lee, Meng-Yang
王士偉
Wang, Shih-Wei
米泓生
Mii, Horng-Sheng
口試日期: 2022/07/20
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 123
中文關鍵詞: 微孔珊瑚穩定碳氧同位素古環境鍶/鈣比早中全新期8.2 ka事件
英文關鍵詞: Coral Porites, stable carbon and oxygen isotopes, paleoenvironment, Sr/Ca ratios, Early Middle Holocene, 8.2 ka event
研究方法: 準實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202201778
論文種類: 學術論文
相關次數: 點閱:230下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分析鑽取自臺灣南部恆春頂潭仔地區之兩口微孔珊瑚(Porites;組成成分為霰石)材料岩芯的穩定碳氧同位素與Sr/Ca比值分析結果來重建早全新世晚期臺灣南部地區之古環境。

    BH-3(長約25.3 cm;U-Th定年為8051±74~7837±31年前)及BH-2(長約122.4 cm;U-Th定年為7635±24~7436±28年前)兩口岩芯之珊瑚標本並非連續生長,根據X-Ray拍攝珊瑚標本用來辨認其最大生長軸方向,並以電鑽沿著生長軸方向以1mm等間距微取樣,再進行穩定碳氧同位素及Sr/Ca比值分析。BH-3氧同位素數值範圍為-4.86‰~-2.83‰(V-PDB;平均值為-3.87‰±0.53‰;1σ;N=188);BH-2氧同位素數值範圍為-5.32‰~-2.52‰(平均值為-4.26‰±0.57‰;1σ;N=595)。BH-3岩芯碳同位素數值範圍為-3.02‰~1.40‰(平均值為-0.74‰±0.93‰);BH-2岩芯碳同位素數值範圍為-3.85‰~2.05‰(平均值為-1.75‰±1.03‰)。BH-3與BH-2岩芯Sr/Ca比值範圍分別為8.99mmol/mol~10.25mmol/mol之間(平均值為9.64mmol/mol±0.23mmol/mol;N=188)和8.56mmol/mol~10.55mmol/mol之間(平均值為9.60mmol/mol±0.28mmol/mol;N=593)。

    根據微孔珊瑚之Sr/Ca比數值範圍共計分為18個區段(BH-3:5段,BH-2:13段),並以線性內差方式計算每一個區間之年代,由老至新這18個區段年代介於8051年前至7432年前之間,其Sr/Ca溫度最低溫和最高溫分別為15.6℃(N=6;7837年前)及28.2℃(N=3;7466年前),而此期間之Sr/Ca比值夏季與冬季溫度(夏季:23.6℃,冬季:17.8℃)則比現今的夏季與冬季溫度(夏季:29.2℃,冬季:23.3℃)低,顯示當時可能是一個較冷的環境。

    根據Sr/Ca比值方程式與海水氧同位素方程式(Shen, 1996)估算,8051~7432年前之海水氧同位素數值範圍為-2.66‰~2.29‰(VSMOW)之間,夏季平均值為0.11‰(N=96),冬季平均值為0.44‰(N=93),而估算之海水氧同位素數值則比現今南灣地區之數值來得大(夏季:-0.05‰,冬季:0.10‰)。假設當時之全球海水氧同位素數值為0.4‰,7635~7493年前(δ18Osw=-0.10‰,N=45)夏季降水量較多夏季季風較強,而在7466~7436年前(δ18Osw=0.58‰,N=100)則出現較高的蒸發效應。

    BH-3珊瑚岩芯在8051~7837年前亦紀錄到較冷的事件(Sr/Ca年均溫:21.1℃),或許與北大西洋8.2 ka的降溫事件(持續時間約為150~200年左右)有關。此外,BH-2珊瑚岩芯紀錄中於7466~7436年前另有一段海水氧同位素較大之時期,可能反映了臺灣南部的另一起氣候轉變訊號。

    本研究珊瑚骨骼碳同位素紀錄在弱季風時期之數值較正常/較強季風時期來得大,可能反映出弱季風期間(降雨量較少),珊瑚共生藻之光合作用較正常/較強季風時期來得更加旺盛。

    Based on the stable carbon and oxygen isotope compositions and Sr/Ca ratio record of two Porites coral skeleton (aragonite) collected from the Dingtanzi area of Hengchun, southern Taiwan, the palaeoenvironment of southern Taiwan during the late Early Holocene is reconstructed.
    BH-3 (25.3 cm long; U-Th dated 8051±74 to 7837±31 yr BP) and BH-2 (122.4 cm long; U-Th dated 7635±24 to 7436±28 yr BP) two cores were drilled. Coral skeletons were photographed by X-Ray to identify their growth direction. Carbonate powders were micro-drilled using an electric drill at 1 mm intervals along the maximum growth direction for stable carbon and oxygen isotope and Sr/Ca ratio analyses. Oxygen isotope values of BH-3 and BH-2 cores range from -4.86‰ to -2.83‰ (V-PDB; average -3.87‰±0.53‰; 1; N=188) and range from -5.32‰ to -2.52‰ (average -4.26‰±0.57‰; N=595), respectively. Carbon isotope values range from -3.02‰ to 1.40‰ (average -0.74‰±0.93‰) for BH-3 core and range from -3.85‰ to 2.05‰ (average -1.75‰±1.03‰) for BH-2 core. Sr/Ca ratios of BH-3 and BH-2 cores are respectively between 8.99 mmol/mol and 10.25 mmol/mol (average 9.64 mmol/mol±0.23 mmol/mol; N=188) and between 8.56 mmol/mol to 10.55 mmol/mol (average 9.60 mmol/mol±0.28 mmol/mol; N=593).
    Based on the Sr/Ca ratios of Porites coral skeletons, 18 stages can be divided (BH-3: 5 stages, BH-2: 13 stages). Assuming constant growth rate of the Porites, in ascending order, age of these 18 stages are calculated from 8051 to 7432 yr BP. The minimum and maximum annual mean Sr/Ca temperatures of these 18 stages are 15.6℃ (N=6; 7837 yr BP) and 28.2℃ (N=3; 7466 yr BP), respectively. The summer and winter Sr/Ca temperatures (summer: 23.6°C, winter: 17.8°C) between 8051 and 7436 yr BP are lower than those of present (summer: 29.2°C, winter: 23.3°C), respectively. This may indicate that the overall early Holocene environment was cooler than that of present.
    Adopting oxygen isotope and Sr/Ca ratios equation for seawater oxygen isotope (Shen, 1996), the seawater oxygen isotope values range from -2.66‰ to 2.29‰ (VSMOW) from 8051 to 7432 yr BP, with average values of 0.11‰ for summer (N=98) and 0.44‰ for winter (N=93). The estimated seawater oxygen isotope values are greater than those of present in southern Taiwan (summer: -0.05‰, winter: 0.10‰). Assuming the global seawater oxygen isotope value was 0.4‰ around 8100 yr BP, more summer precipitation hence stronger summer monsoon was observed from 7635 to 7493 yr BP (18Osw = -0.10‰, N=45), whereas higher evaporation rate occurred from 7466 to 7436 yr BP (18Osw = 0.58‰, N=100).
    A cooler Sr/Ca temperature event was observed in BH-3 coral core from 8051 to 7837 yr BP (annual mean Sr/Ca temperature = 21.1°C). It may be an extension from the 8.2 ka cooling event in the North Atlantic Ocean (lasting about 150 to 200 years). The BH-2 coral core recorded an additional period of higher oxygen isotope values of seawater between 7466 and 7436 yr BP, which may indicate another climate change event in southern Taiwan.
    The carbon isotope values of coral skeletons during the weak monsoon period were greater than those during normal/stronger monsoon period. It may indicate that the photosynthesis of coral symbiotic algae during the weak monsoon period (when rainfall was less) was more active than that during normal/stronger monsoon period.

    第一章 緒論 1 1.1 前言 1 1.2 全新世古氣候環境 3 1.2.1 全新世早期8.2 ka降溫事件及全球海水面變化 5 1.3 造礁珊瑚與其同位素及微量元素 10 1.3.1 珊瑚骨骼氧同位素成分之環境應用 12 1.3.2 珊瑚骨骼碳同位素成分之環境應用 13 1.3.3 珊瑚骨骼Sr/Ca比值之環境應用 14 1.4 研究目的 15 第二章 研究地點、材料與研究方法 16 2.1 研究地點與材料 16 2.2 研究方法 20 2.2.1 前處理 20 2.2.2 AMS C14定年分析 20 2.2.3 U-Th定年分析 21 2.2.4 穩定碳氧同位素分析 21 2.2.5 Sr/Ca比值分析 22 第三章 研究結果 24 3.1 X-Ray分析結果 24 3.2 拉曼光譜儀分析結果 24 3.3 AMS C14定年分析結果 27 3.4 U-Th定年分析結果 27 3.5 珊瑚生長紋變化 28 3.6 穩定碳氧同位素分析結果 29 3.7 Sr/Ca比分析結果 30 第四章 討論 32 4.1 珊瑚Sr/Ca比值估算之海水表面溫度 32 4.2 臺灣南部地區8051~7432 yr BP之海水表面溫度變化 35 4.3 珊瑚δ18O與Sr/Ca-SST估算之海水δ18O 45 4.4 臺灣南部地區8051~7432 yr BP之海水氧同位素變化及氣候轉變紀錄 48 4.5 珊瑚骨骼之氧同位素紀錄回推海水表面溫度 60 4.6 Sr/Ca比值之變化 63 4.7 臺灣南部地區8051~7432 yr BP之碳同位素變化 66 第五章 結論 68 參考文獻 70 附錄一、BH-3 Porites珊瑚岩芯之δ18O、δ13C、Sr/Ca比值、Sr/Ca換算之海溫及估算之海水氧同位素數值 89 附錄二、BH-2 Porites珊瑚岩芯之δ18O、δ13C、Sr/Ca比值、Sr/Ca換算之海溫及估算之海水氧同位素數值 97 附錄三、BH-3及BH-2 Porites珊瑚岩芯之AMS碳十四定年結果 122 附錄四、BH-3及BH-2 Porites珊瑚岩芯之U-Th定年結果 123

    沈川洲(1996)高精度之鍶鈣比值分析及其在環境上的應用。國立清華大學化學研究所博士論文,共187頁。
    王博賢(2005)珊瑚骨骼硼同位素記錄與其環境意義。國立成功大學地球科學研究所碩士論文,共87頁。
    余采倫(2007)珊瑚骨骼中鋇鈣比值的地球化學及環境意義。國立成功大學地球科學研究所碩士論文,共46頁。
    吳昭緯(2011)由微孔珊瑚骨骼穩定碳氧同位素組成與鍶/鈣比分析探討台灣西北部全新世中期之古氣候。國立臺灣師範大學地球科學研究所碩士論文,共75頁。
    李红春、顧德隆、陳文寄、李鐵英(1997)利用洞穴石筍的δ18O和δ13C重建3000 ka以來北京地區古氣候和古環境—石花洞研究系列之三:地震地質,第78-87頁。
    林久芳(1989)台灣恆春半島及東部海岸全新世隆起珊瑚之鈾系定年研究。國立臺灣大學地質學研究所碩士論文,共119頁。
    林重燁(2019)全新世早期微孔珊瑚骨骼穩定碳氧同位素組成與Sr/Ca比值反映之臺灣西南部古環境。國立臺灣師範大學地球科學研究所碩士論文,共114頁。
    林清芬(2000)南海及呂宋海峽海水氧同位素組成之研究。國立中山大學海洋地質及化學研究所碩士論文,共80頁。
    林奐宇(2020)現行與未來氣候下的台灣森林植物分布預測研究。國立臺灣大學生態學與演化生物學研究所博士論文,共177頁。
    孫虓天(1999)由珊瑚紀錄重建全新世大暖期之南台灣氣候。國立臺灣大學地質學研究所碩士論文,共55頁。
    胡超涌、汪穎釗、劉浴輝、王孟禹、方念喬(2016)9.6~6.0 ka B.P. 阿曼降水重建及其與中國南方降水的對比:第四纪研究,第3期,第36卷,第581-586頁。
    崔英方、董進國、趙侃(2019)基於石筍紀錄的小冰期與 "8.2 ka BP" 事件的對比研究:中國岩溶,第一期,第40-49頁。
    董進國、吉雲松、錢鵬(2013)黄土高原洞穴石筍紀錄的 8.2 ka B.P.氣候突變事件:第四纪研究,第5期,第33卷,第1034-1036頁。
    戴昌鳳、俞何興、喬凌雲、王冑、陳慶生、詹森、楊穎堅、邱銘達、郭家榆、郭天俠、溫良碩、陳守愚、李佑青、蕭仁傑、謝志豪、張妮娜、林佩諭、林先詠(2014) 臺灣區域海洋學初版,國立臺灣大學出版中心,第143-149頁
    科技部海洋學門資料庫(Ocean Data Bank of the Ministry of Science and Technology, Taiwan)(1985~2022):https://www.odb.ntu.edu.tw/
    Abram, N., Webster, J., Davies, P., and Dullo, W., 2001, Biological response of coral reefs to sea surface temperature variation: Evidence from the raised Holocene reefs of Kikai-jima (Ryukyu Islands, Japan): Coral Reefs, v. 20, no. 3, p. 221-234.
    Alibert, C., and McCulloch, M. T., 1997, Strontium/calcium ratios in modern Porites corals from the Great Barrier Reef as a proxy for sea surface temperature: Calibration of the thermometer and monitoring of ENSO: Paleoceanography, v. 12, no. 3, p. 345-363.
    Allen, J. R. M., Long, A. J., Ottley, C. J., Graham Pearson, D., and Huntley, B., 2007, Holocene climate variability in northernmost Europe: Quaternary Science Reviews, v. 26, no. 9-10, p. 1432-1453.
    Alley, R. B., and Ágústsdóttir, A. M., 2005, The 8 k event: Cause and consequences of a major Holocene abrupt climate change: Quaternary Science Reviews, v. 24, no. 10-11, p. 1123-1149.
    Alley, R. B., Mayewski, P. A., Sowers, T., Stuiver, M., Taylor, K. C., and Clark, P. U., 1997, Holocene climatic instability: A prominent, widespread event 8200 yr ago: Geology, v. 25, no. 6, p. 483-486.
    An, Z., Porter, S. C., Kutzbach, J. E., Xihao, W., Suming, W., Xiaodong, L., Xiaoqiang, L., and Weijian, Z., 2000, Asynchronous Holocene Optimum of the East Asian monsoon: Quaternary Science Reviews, v. 19, no. 8, p. 743-762.
    Anderson, P., Whitlock, C., Bartlein, P., Behling, P., Brubaker, L., Cushing, E., Dodson, J., Dworetsky, B., Guetter, P., Harrison, S., Huntley, B., Kutzbach, J., Markgraf, V., Marvel, R., McGlone, M., Mix, A., Moar, N., Morley, J., Perrott, R., and Jr, W., 1988, Climatic Changes of the Last 18,000 Years: Observations and Model Simulations: Science, v. 241, p. 1043-1052.
    Anderson, T. F., and Arthur, M. A., 1983, Stable Isotopes of Oxygen and Carbon and their Application to Sedimentologic and Paleoenvironmental Problems, in Arthur, M. A., Anderson, T. F., Kaplan, I. R., Veizer, J., and Land, L. S., eds., Stable Isotopes in Sedimentary Geology, Volume 10, SEPM Society for Sedimentary Geology.
    Barber, D. C., Dyke, A., Hillaire-Marcel, C., Jennings, A. E., Andrews, J. T., Kerwin, M. W., Bilodeau, G., McNeely, R., Southon, J., Morehead, M. D., and Gagnon, J. M., 1999, Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes: Nature, v. 400, no. 6742, p. 344-348.
    Bard, E., Hamelin, B., Fairbanks, R. G., and Zindler, A., 1990, Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U–Th ages from Barbados corals: Nature, v. 345, no. 6274, p. 405-410.
    Beck, J. W., Edwards, R. L., Ito, E., Taylor, F. W., Recy, J., Rougerie, F., Joannot, P., and Henin, C., 1992, Sea-surface temperature from coral skeletal strontium/calcium ratios: Science, v. 257, no. 5070, p. 644-647.
    Beck, J. W., Récy, J., Taylor, F., Edwards, R. L., and Cabioch, G., 1997, Abrupt changes in early Holocene tropical sea surface temperature derived from coral records: Nature, v. 385, no. 6618, p. 705-707.
    Berger, A., and Loutre, M. F., 1991, Insolation values for the climate of the last 10 million years: Quaternary Science Reviews, v. 10, no. 4, p. 297-317.
    Bird, M., Fifield, L. K., Teh, T. S., Chang, C. H., Shirlaw, N., and Lambeck, K., 2007, An inflection in the rate of early Mid-Holocene eustatic sea-level rise: A new sea-level curve from Singapore: Estuarine, Coastal and Shelf Science, v. 71, p. 523-536.
    Bird, M. I., Austin, W. E., Wurster, C. M., Fifield, L. K., Mojtahid, M., and Sargeant, C., 2010, Punctuated eustatic sea-level rise in the early mid-Holocene: Geology, v. 38, no. 9, p. 803-806.
    Boch, R., Spötl, C., and Kramers, J., 2009, High-resolution isotope records of early Holocene rapid climate change from two coeval stalagmites of Katerloch Cave, Austria: Quaternary Science Reviews, v. 28, no. 23, p. 2527-2538.
    Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans Michael, N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G., 2001, Persistent Solar Influence on North Atlantic Climate During the Holocene: Science, v. 294, no. 5549, p. 2130-2136.
    Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., DeMenocal, P., Priore, P., Cullen, H., Hajdas, I., and Bonani, G., 1997, A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates: Science, v. 278, no. 5341, p. 1257-1266.
    Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J. Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, T., Hewitt, C. D., Kageyama, M., Kitoh, A., Laîné, A., Loutre, M. F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, S. L., Yu, Y., and Zhao, Y., 2007, Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum - Part 1: experiments and large-scale features: Clim. Past, v. 3, no. 2, p. 261-277.
    Cai, Y., Cheng, X., Ma, L., Mao, R., Breitenbach, S. F. M., Zhang, H., Xue, G., Cheng, H., Edwards, R. L., and An, Z., 2021, Holocene variability of East Asian summer monsoon as viewed from the speleothem δ18O records in central China: Earth and Planetary Science Letters, v. 558.
    Carlson, A. E., LeGrande, A. N., Oppo, D. W., Came, R. E., Schmidt, G. A., Anslow, F. S., Licciardi, J. M., and Obbink, E. A., 2008, Rapid early Holocene deglaciation of the Laurentide ice sheet: Nature Geoscience, v. 1, no. 9, p. 620-624.
    Chen, F., Xu, Q., Chen, J., Birks, H. J. B., Liu, J., Zhang, S., Jin, L., An, C., Telford, R. J., Cao, X., Wang, Z., Zhang, X., Selvaraj, K., Lu, H., Li, Y., Zheng, Z., Wang, H., Zhou, A., Dong, G., Zhang, J., Huang, X., Bloemendal, J., and Rao, Z., 2015, East Asian summer monsoon precipitation variability since the last deglaciation: Scientific Reports, v. 5, no. 11186.
    Corrège, T., 2006, Sea surface temperature and salinity reconstruction from coral geochemical tracers: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 232, no. 2, p. 408-428.
    Davis, B. A. S., Brewer, S., Stevenson, A. C., and Guiot, J., 2003, The temperature of Europe during the Holocene reconstructed from pollen data: Quaternary Science Reviews, v. 22, no. 15, p. 1701-1716.
    Davis, P. T., Menounos, B., and Osborn, G., 2009, Holocene and latest Pleistocene alpine glacier fluctuations: a global perspective: Quaternary Science Reviews, v. 28, no. 21, p. 2021-2033.
    de Villiers, S., Shen, G. T., and Nelson, B. K., 1994, The Sr/Ca-temperature relationship in coralline aragonite: Influence of variability in ( Sr/Ca)seawater and skeletal growth parameters: Geochimica et Cosmochimica Acta, v. 58, no. 1, p. 197-208.
    Denton, G. H., and Karlén, W., 1973, Holocene Climatic Variations—Their Pattern and Possible Cause: Quaternary Research, v. 3, no. 2, p. 155-205.
    Ding, X., Zheng, L., Zheng, X., and Kao, S. J., 2020, Holocene East Asian Summer Monsoon Rainfall Variability in Taiwan: Frontiers in Earth Science, v. 8.
    Druffel, E. R. M., Dunbar, R. B., Wellington, G. M., and Minnis, S. A., 1990, Reef-Building Corals and Identification of ENSO Warming Episodes: Elsevier oceanography series, v. 52, p. 233-253.
    Dunbar, R. B., and Wellington, G. M., 1981, Stable isotopes in a branching coral monitor seasonal temperature variation: Nature, v. 293, no. 5832, p. 453-455.
    Dykoski, C. A., Edwards, R. L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z., and Revenaugh, J., 2005, A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China: Earth and Planetary Science Letters, v. 233, no. 1, p. 71-86.
    Epstein, S., Buchsbaum, R., Lowenstam, H. A., and Urey, H. C., 1953, Revised carbonate-water isotopic temperature scale: GSA Bulletin, v. 64, no. 11, p. 1315-1326.
    Fairbanks, R. G., and Dodge, R. E., 1979, Annual periodicity of the 18O/16O and 13C/ 12C ratios in the coral Montastrea annularis: Geochimica et Cosmochimica Acta, v. 43, no. 7, p. 1009-1020.
    Fairbanks, R. G., Evans, M. N., Rubenstone, J. L., Mortlock, R. A., Broad, K., Moore, M. D., and Charles, C. D., 1997, Evaluating climate indices and their geochemical proxies measured in corals: Coral Reefs, v. 16, no. 1, p. S93-S100.
    Gagan, M., Ayliffe, L., Hopley, D., Cali, J., Mortimer, G., Chappell, J., McCulloch, M., and Head, M., 1998, Temperature and Surface-Ocean Water Balance of the Mid-Holocene Tropical Western Pacific: Science, v. 279, p. 1014-1018.
    Gagan, M. K., Ayliffe, L. K., Beck, J. W., Cole, J. E., Druffel, E. R. M., Dunbar, R. B., and Schrag, D. P., 2000, New views of tropical paleoclimates from corals: Quaternary Science Reviews, v. 19, no. 1-5, p. 45-64.
    Gagan, M. K., Chivas, A. R., and Isdale, P. J., 1994, High-resolution isotopic records from corals using ocean temperature and mass-spawning chronometers: Earth and Planetary Science Letters, v. 121, no. 3, p. 549-558.
    Gagan, M. K., Dunbar, G. B., and Suzuki, A., 2012, The effect of skeletal mass accumulation in Porites on coral Sr/Ca and δ18O paleothermometry: Paleoceanography, v. 27, no. 1.
    Gasse, F., 2000, Hydrological changes in the African tropics since the Last Glacial Maximum: Quaternary Science Reviews, v. 19, no. 1, p. 189-211.
    Gentry, D. K., Sosdian, S., Grossman, E. L., Rosenthal, Y., Hicks, D., and Lear, C. H., 2008, Stable Isotope and Sr/Ca Profiles from the Marine Gastropod Conus ermineus: Testing a Multiproxy Approach for Inferring Paleotemperature and Paleosalinity: PALAIOS, v. 23, no. 3/4, p. 195-209.
    Goreau, T. F., Goreau, N. I., and Goreau, T. J., 1979, Corals and Coral Reefs: Scientific American, August 1979.
    Grachev, A., and Severinghaus, J., 2005, A revised +10±4 °C magnitude of the abrupt change in Greenland temperature at the Younger Dryas termination using published GISP2 gas isotope data and air thermal diffusion constants: Quaternary Science Reviews, v. 24, p. 513-519.
    Grottoli, A., 2002, Effect of light and brine shrimp on skeletal delta C-13 in the Hawaiian coral Porites compressa: A tank experiment: Geochimica Et Cosmochimica Acta, v. 66, p. 1955-1967.
    Grottoli, A., and Wellington, G., 1999, Effect of light and zooplankton on skeletal δ13C values in the eastern Pacific corals Pavona clavus and Pavona gigantea: Coral Reefs, v. 18, p. 29-41.
    Guan B, X., 1986, A sketch of the current structures and eddy characteristics in the East China Sea: Studia Merina Sinica, v. 27, p. 1-22.
    Guilderson Thomas, P., Fairbanks Richard, G., and Rubenstone James, L., 1994, Tropical Temperature Variations Since 20,000 Years Ago: Modulating Interhemispheric Climate Change: Science, v. 263, no. 5147, p. 663-665.
    Haug Gerald, H., Hughen Konrad, A., Sigman Daniel, M., Peterson Larry, C., and Röhl, U., 2001, Southward Migration of the Intertropical Convergence Zone Through the Holocene: Science, v. 293, no. 5533, p. 1304-1308.
    Heikkilä, M., and Seppä, H., 2010, Holocene climate dynamics in Latvia, eastern Baltic region: A pollen-based summer temperature reconstruction and regional comparison: Boreas, v. 39, no. 4, p. 705-719.
    Hijma, M. P., and Cohen, K. M., 2010, Timing and magnitude of the sea-level jump preluding the 8200 yr event: Geology, v. 38, no. 3, p. 275-278.
    Hoefs, J., 2003, Stable Isotope Geochemistry (Sixth Edition), Springer, Heidelberg, Springer Berlin, 286 p.
    Hori, K., and Saito, Y., 2007, An early Holocene sea-level jump and delta initiation: Geophysical Research Letters, v. 34, no. 18.
    Horton, B. P., Gibbard, P. L., Mine, G. M., Morley, R. J., Purintavaragul, C., and Stargardt, J. M., 2005, Holocene sea levels and palaeoenvironments, Malay-Thai Peninsula, southeast Asia: The Holocene, v. 15, no. 8, p. 1199-1213.
    Hudson, J. H., Shinn, E. A., Halley, R. B., and Lidz, B., 1976, Sclerochronology: A tool for interpreting past environments: Geology, v. 4, no. 6, p. 361-364.
    Hwang, S. J., and Tang, T. Y., 1993, Distribution of CTD observation,distribution of Salinity contour,distribution of density contour. CTD Data Bank Data Report Volume II.
    Jakobsson, M., Long, A., Ingólfsson, Ó., Kjaer, K., and Spielhagen, R., 2010, New insights on Arctic Quaternary climate variability from palaeo-records and numerical modelling: Quaternary Science Reviews, v. 29, p. 3349-3358.
    Klein, T., and Anderegg, W. R. L., 2021, A vast increase in heat exposure in the 21st Century is driven by global warming and urban population growth: Sustainable Cities and Society, v. 73, article 103098.
    Klimenko, V., Klimanov, V. A., and Fedorov, M. V., 1996, The history of the mean temperature of the Northern Hemisphere over the last 11,000 years: Trans. Russ. Acad. Sci., v. 4, p. 626-629.
    Knutson David, W., Buddemeier Robert, W., and Smith Stephen, V., 1972, Coral Chronometers: Seasonal Growth Bands in Reef Corals: Science, v. 177, no. 4045, p. 270-272.
    Kobashi, T., Severinghaus, J., and Barnola, J.-M., 2008, 4 ± 1.5 °C abrupt warming 11,270 yr ago identified from trapped air in Greenland ice: Earth and Planetary Science Letters - EARTH PLANET SCI LETT, v. 268, p. 397-407.
    Land, L. S., Lang, J. C., and Barnes, D. J., 1975, Extension rate: A primary control on the isotopic composition of West Indian (Jamaican) scleractinian reef coral skeletons: Marine Biology, v. 33, no. 3, p. 221-233.
    Lee, C.-Y., Liew, P.-M., and Lee, T.-Q., 2010, Pollen records from southern Taiwan: implications for East Asian summer monsoon variation during the Holocene: The Holocene, v. 20, no. 1, p. 81-89.
    Lee, H.-J., Chao, S.-Y., Fan, K.-L., Wang, Y.-H., and Liang, N., 1997, Tidally Induced Upwelling in a Semi-Enclosed Basin: Nan Wan Bay: Journal of Oceanography, v. 53.
    Lee, H. J., Chao, S. Y., Fan, K. L., and Kuo, T. Y., 1999, Tide-Induced Eddies and Upwelling in a Semi-enclosed Basin: Nan Wan: Estuarine, Coastal and Shelf Science, v. 49, no. 6, p. 775-787.
    Li, 2019, Symbiotic microbiomes of coral reefs sponges and corals, Dordrecht, The Netherlands, Springer. p.569.
    Li, J., Dodson, J., Yan, H., Wang, W., Innes, J. B., Zong, Y., Zhang, X., Xu, Q., Ni, J., and Lu, F., 2018, Quantitative Holocene climatic reconstructions for the lower Yangtze region of China: Climate Dynamics, v. 50, no. 3, p. 1101-1113.
    Liew, P. M., Lee, C. Y., and Kuo, C. M., 2006, Holocene thermal optimal and climate variability of East Asian monsoon inferred from forest reconstruction of a subalpine pollen sequence, Taiwan: Earth and Planetary Science Letters, v. 250, no. 3, p. 596-605.
    Lin, T. W., Kaboth-Bahr, S., Yamoah, K. A., Bahr, A., Burr, G., Chang, Y. P., Dietze, E., Li, H. C., Su, C. C., Yam, R. S. W., and Löwemark, L., 2021, East Asian winter monsoon variation during the last 3000 years as recorded in a subtropical mountain lake, northeastern Taiwan: Holocene, v. 31, no. 9, p. 1430-1442.
    Linsley, B. K., Dunbar, R. B., Dassié, E. P., Tangri, N., Wu, H. C., Brenner, L. D., and Wellington, G. M., 2019, Coral carbon isotope sensitivity to growth rate and water depth with paleo-sea level implications: Nature Communications, v. 10, article 2056.
    Liu, Y. H., Henderson, G. M., Hu, C. Y., Mason, A. J., Charnley, N., Johnson, K. R., and Xie, S. C., 2013, Links between the East Asian monsoon and North Atlantic climate during the 8,200 year event: Nature Geoscience, v. 6, no. 2, p. 117-120.
    Lu, H., Yi, S., Liu, Z., Mason, J. A., Jiang, D., Cheng, J., Stevens, T., Xu, Z., Zhang, E., Jin, L., Zhang, Z., Guo, Z., Wang, Y., and Otto-Bliesner, B., 2013, Variation of East Asian monsoon precipitation during the past 21 k.y. and potential CO2 forcing: Geology, v. 41, no. 9, p. 1023-1026.
    Mörner, N.-A., 2008, A 10,700 years' paleotemperature record from Gotland and Pleistocene/Holocene boundary events in Sweden: Boreas, v. 9, p. 283-287.
    McConnaughey, T., 1989a, 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns: Geochimica et Cosmochimica Acta, v. 53, no. 1, p. 151-162.
    McConnaughey, 1989b, 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects: Geochimica et Cosmochimica Acta, v. 53, no. 1, p. 163-171.
    McConnaughey, T. A., Burdett, J., Whelan, J. F., and Paull, C. K., 1997, Carbon isotopes in biological carbonates: Respiration and photosynthesis: Geochimica et Cosmochimica Acta, v. 61, no. 3, p. 611-622.
    McCulloch, M., Fallon, S., Wyndham, T., Hendy, E., Lough, J., and Barnes, D., 2003, Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement: Nature, v. 421, no. 6924, p. 727-730.
    McCulloch, M. T., Gagan, M. K., Mortimer, G. E., Chivas, A. R., and Isdale, P. J., 1994, A high-resolution Sr/Ca and δ18O coral record from the Great Barrier Reef, Australia, and the 1982–1983 El Niño: Geochimica et Cosmochimica Acta, v. 58, no. 12, p. 2747-2754.
    Mitsuguchi, T., Matsumoto, E., and Uchida, T., 2003, Mg/Ca and Sr/Ca ratios of Porites coral skeleton: Evaluation of the effect of skeletal growth rate: Coral Reefs, v. 22, no. 4, p. 381-388.
    Mitsuguchi, T., Matsumoto, E., Uchida, T., T, K., and Isdale, P., 1998, An attempt to recover middle Holocene sea surface temperature in Okinawa region from coral Mg/Ca and Sr/Ca ratios. Proc. 3rd Int. Mar. Sci. Symp. Tokyo, v. 1, p. 50-56.
    Morimoto, M., Abe, O., Kayanne, H., Kurita, N., Matsumoto, E., and Yoshida, N., 2002, Salinity records for the 1997–98 El Niño from Western Pacific corals: Geophysical Research Letters, v. 29, no. 11, p. 35-31-35-34.
    Morimoto, M., Kayanne, H., Abe, O., and McCulloch, M. T., 2007, Intensified mid-Holocene Asian monsoon recorded in corals from Kikai Island, subtropical northwestern Pacific: Quaternary Research, v. 67, no. 2, p. 204-214.
    Morrill, C., and Jacobsen, R. M., 2005, How widespread were climate anomalies 8200 years ago?: Geophysical Research Letters, v. 32, no. 19.
    Niino, H., and Emery, K. O., 1961, Sediments of Shallow Portions of East China Sea and South China Sea: GSA Bulletin, v. 72, no. 5, p. 731-762.
    Nozaki, Y., Rye, D. M., Turekian, K. K., and Dodge, R. E., 1978, A 200 year record of carbon-13 and carbon-14 variations in a Bermuda coral: Geophysical Research Letters, v. 5, no. 10, p. 825-828.
    Omata, T., Suzuki, A., Kawahata, H., Nojima, S., Minoshima, K., and Hata, A., 2006, Oxygen and carbon stable isotope systematics in Porites coral near its latitudinal limit: The coral response to low-thermal temperature stress: Global and Planetary Change, v. 53, no. 1, p. 137-146.
    Ourbak, T., Corrège, T., Malaizé, B., Le Cornec, F., Charlier, K., and Peypouquet, J. P., 2006, A high-resolution investigation of temperature, salinity, and upwelling activity proxies in corals: Geochemistry, Geophysics, Geosystems, v. 7, no. 3.
    Perry, C. A., and Hsu, K. J., 2000, Geophysical, Archaeological, and Historical Evidence Support a Solar-Output Model for Climate Change: Proceedings of the National Academy of Sciences of the United States of America, v. 97, no. 23, p. 12433-12438.
    Renssen, H., Seppä, H., Heiri, O., Roche, D. M., Goosse, H., and Fichefet, T., 2009, The spatial and temporal complexity of the Holocene thermal maximum: Nature Geoscience, v. 2, no. 6, p. 411-414.
    Risebrobakken, B., Jansen, E., Andersson, C., Mjelde, E., and Hevrøy, K., 2003, A high-resolution study of Holocene paleoclimatic and paleoceanographic changes in the Nordic Seas: Paleoceanography, v. 18, no. 1.
    Rohling, E. J., and Pälike, H., 2005, Centennial-scale climate cooling with a sudden cold event around 8,200 years ago: Nature, v. 434, no. 7036, p. 975-979.
    Runcorn, S. K., 1966, Corals as Paleontological Clocks: Scientific American, v. 215, no. 4, p. 26-33.
    Sanjay, J., Krishnan, R., Shrestha, A. B., Rajbhandari, R., and Ren, G.-Y., 2017, Downscaled climate change projections for the Hindu Kush Himalayan region using CORDEX South Asia regional climate models: Advances in Climate Change Research, v. 8, no. 3, p. 185-198.
    Schrag, D. P., 1999, Rapid analysis of high-precision Sr/Ca ratios in corals and other marine carbonates: Paleoceanography, v. 14, no. 2, p. 97-102.
    Selvaraj, K., Arthur Chen, C.-T., Lou, J.-Y., and Kotlia, B. S., 2011, Holocene weak summer East Asian monsoon intervals in Taiwan and plausible mechanisms: Quaternary International, v. 229, no. 1, p. 57-66.
    Shen, C., Liu, K., Lee, M., Lee, T., and Wang, C., Tracing coastal waster masses with Sr/Ca ratio and salinity in Nanwan Bay: Taiwan2002/12/1 2002, American Geophysical Union, AGU Fall Meeting, Volume 2002, p. OS12C-0295.
    Shen, C. C., Lee, T., Chen, C. Y., Wang, C. H., Dai, C. F., and Li, L. A., 1996, The calibration of D[Sr/Ca]versus sea surface temperature relationship for Porites corals: Geochimica et Cosmochimica Acta, v. 60, no. 20, p. 3849-3858.
    Shen, C. C., Lee, T., Liu, K. K., Hsu, H. H., Edwards, R. L., Wang, C. H., Lee, M. Y., Chen, Y. G., Lee, H. J., and Sun, H. T., 2005, An evaluation of quantitative reconstruction of past precipitation records using coral skeletal Sr/Ca and δ18O data: Earth and Planetary Science Letters, v. 237, no. 3-4, p. 370-386.
    Shi, X., Chen, J., Gu, L., Xu, C.-Y., Chen, H., and Zhang, L., 2021, Impacts and socioeconomic exposures of global extreme precipitation events in 1.5 and 2.0 °C warmer climates: Science of The Total Environment, v. 766, article 142665.
    Shimamura, M., Irino, T., Oba, T., Xu, G., Lu, B., Wang, L., and Toyoda, K., 2008, Main controlling factors of coral skeletal carbon isotopic composition and skeletal extension rate: High-resolution study at Hainan Island, South China Sea, Geochemistry Geophysics Geosystems, v. 9, no. 4.
    Shimamura, M., Oba, T., Xu, G., Lu, B., Wang, L., Murayama, M., Toyoda, K., and Winter, A., 2005, Fidelity of δ18O as a proxy for sea surface temperature: Influence of variable coral growth rates on the coral Porites lutea from Hainan Island, China: Geochemistry, Geophysics, Geosystems, v. 6, no. 9.
    Sinclair, D. J., Kinsley, L. P. J., and McCulloch, M. T., 1998, High resolution analysis of trace elements in corals by laser ablation ICP-MS: Geochimica et Cosmochimica Acta, v. 62, no. 11, p. 1889-1901.
    Smith, S. V., Buddemeier, R. W., Redalje, R. C., and Houck, J. E., 1979, Strontium-Calcium Thermometry in Coral Skeletons: Science, v. 204, no. 4391, p. 404-407.
    Stott, L., Cannariato, K., Thunell, R., Haug, G. H., Koutavas, A., and Lund, S., 2004, Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch: Nature, v. 431, p. 56-59.
    Su, J., Guan, B. X., and Jiang, J. Z., 1990, The Kuroshio. Part I. Physical features: Oceanography and Marine Biology Annual Review, v. 28, p. 11-71.
    Su, R., Sun, D., Bloemendal, J., and Zhu, Z., 2006, Temporal and spatial variability of the oxygen isotopic composition of massive corals from the South China Sea: Influence of the Asian monsoon: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 240, p. 630-648.
    Sun, D., Gagan, M. K., Cheng, H., Scott-Gagan, H., Dykoski, C. A., Edwards, R. L., and Su, R., 2005, Seasonal and interannual variability of the Mid-Holocene East Asian monsoon in coral δ18O records from the South China Sea: Earth and Planetary Science Letters, v. 237, no. 1, p. 69-84.
    Sun, D., Su, R., McConnaughey, T. A., and Bloemendal, J., 2008, Variability of skeletal growth and δ13C in massive corals from the South China Sea: Effects of photosynthesis, respiration and human activities: Chemical Geology, v. 255, no. 3, p. 414-425.
    Suzuki, A., Yukino, I., and Kawahata, H., 1999, Temperature-skeletal . δ18O relationship of Porites australiensis from Ishigaki Island, the Ryukyus, Japan: Geochemical Journal, v. 33, p. 419-428.
    Tamura, T., Saito, Y., Sieng, S., Ben, B., Kong, M., Sim, I., Choup, S., and Akiba, F., 2009, Initiation of the Mekong River Delta at 8 ka: Evidence from the sedimentary succession in the Cambodian lowland: Quaternary Science Reviews, v. 28, p. 327-344.
    Tharammal, T., Bala, G., Paul, A., Noone, D., Contreras-Rosales, A., and Thirumalai, K., 2021, Orbitally driven evolution of Asian monsoon and stable water isotope ratios during the Holocene: Isotope-enabled climate model simulations and proxy data comparisons: Quaternary Science Reviews, v. 252, article 106743.
    Thomas, E. R., Wolff, E. W., Mulvaney, R., Steffensen, J. P., Johnsen, S. J., Arrowsmith, C., White, J. W. C., Vaughn, B., and Popp, T., 2007, The 8.2 ka event from Greenland ice cores: Quaternary Science Reviews, v. 26, no. 1, p. 70-81.
    von Grafenstein, U., Erlenkeuser, H., Müller, J., Jouzel, J., and Johnsen, S., 1998, The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland: Climate Dynamics, v. 14, no. 2, p. 73-81.
    Walker, M., Johnsen, S., Rasmussen, S. O., Popp, T., Steffensen, J.-P., Gibbard, P., Hoek, W., Lowe, J., Andrews, J., Björck, S., Cwynar, L. C., Hughen, K., Kershaw, P., Kromer, B., Litt, T., Lowe, D. J., Nakagawa, T., Newnham, R., and Schwander, J., 2009, Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records: Journal of Quaternary Science, v. 24, no. 1, p. 3-17.
    Wang, N., Yao, T., Thompson, L., Henderson, K., and Davis, M., 2002, Evidence for cold events in the early Holocene from the Guliya ice core, Tibetan Plateau, China: Chinese Science Bulletin, v. 47, p. 1422-1427.
    Wang, Q., Liu, D., Wang, Y., and Deng, C., 2015, Transitional Patterns of YD and 8.2 ka Event Recorded by Annually-laminated Stalagmites from Qingtian Cave, Mt.Shennongjia.
    Wang, W., and Feng, Z., 2013, Holocene moisture evolution across the Mongolian Plateau and its surrounding areas: A synthesis of climatic records: Earth-Science Reviews, v. 122, p. 38-57.
    Wang, X., Auler, A. S., Edwards, R. L., Cheng, H., Cristalli, P. S., Smart, P. L., Richards, D. A., and Shen, C.-C., 2004, Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies: Nature, v. 432, no. 7018, p. 740-743.
    Wang, X., Chu, G., Sheng, M., Zhang, S., Li, J., Chen, Y., Tang, L., Su, Y., Pei, J., and Yang, Z., 2016, Millennial-scale Asian summer monsoon variations in South China since the last deglaciation: Earth and Planetary Science Letters, v. 451, p. 22-30.
    Wang, Y., Cheng, H., Edwards, R. L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M. J., Dykoski, C. A., and Li, X., 2005, The holocene Asian monsoon: Links to solar changes and North Atlantic climate: Science, v. 308, no. 5723, p. 854-857.
    Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C., and Dorale, J. A., 2001, A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China: Science, v. 294, no. 5550, p. 2345-2348.
    Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U., Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O., Küttel, M., Müller, S. A., Prentice, I. C., Solomina, O., Stocker, T. F., Tarasov, P., Wagner, M., and Widmann, M., 2008, Mid- to Late Holocene climate change: an overview: Quaternary Science Reviews, v. 27, no. 19, p. 1791-1828.
    Wanner, H., Solomina, O., Grosjean, M., Ritz, S. P., and Jetel, M., 2011, Structure and origin of Holocene cold events: Quaternary Science Reviews, v. 30, no. 21, p. 3109-3123.
    Weber, J. N., 1973, Incorporation of strontium into reef coral skeletal carbonate: Geochimica et Cosmochimica Acta, v. 37, no. 9, p. 2173-2190.
    Weber, J. N., 1974, C-13/C-12 ratios as natural isotopic tracers elucidating calcification processes in reef-building and non-reef-building corals: Proceedings Int Coral Reef Symp, v. 22, p. 289-298.
    Weber, J. N., Deines, P., Weber, P. H., and Baker, P. A., 1976, Depth related changes in the 13C/12C ratio of skeletal carbonate deposited by the Caribbean reef-frame building coral Montastrea annularis: further implications of a model for stable isotope fractionation by scleractinian corals: Geochimica et Cosmochimica Acta, v. 40, no. 1, p. 31-39.
    Weber, J. N., and Woodhead, P. M. J., 1972, Temperature dependence of oxygen-18 concentration in reef coral carbonates: Journal of Geophysical Research (1896-1977), v. 77, no. 3, p. 463-473.
    Wu, C.-Y., 2013, Holocene Sedimentation on the Lanyang Plain and Adjacent Continental Shelf, Northwestern Taiwan" . Paper 1539617933.
    Wu, H. C., Moreau, M., Linsley, B. K., Schrag, D. P., and Corrège, T., 2014, Investigation of sea surface temperature changes from replicated coral Sr/Ca variations in the eastern equatorial Pacific (Clipperton Atoll) since 1874: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 412, p. 208-222.
    Wyndham, T., McCulloch, M., Fallon, S., and Alibert, C., 2004, High-resolution coral records of rare earth elements in coastal seawater: biogeochemical cycling and a new environmental proxy: Geochimica et Cosmochimica Acta, v. 68, no. 9, p. 2067-2080.
    Xie, X., Huang, P., Zhou, S., and Zhang, J., 2022, Changes in ENSO-driven Hadley circulation variability under global warming: Atmospheric Research, v. 274, article 106220.
    Xu, C., Zhao, Q., An, W., Wang, S., Tan, N., Sano, M., Nakatsuka, T., Borhara, K., and Guo, Z., 2021a, Tree-ring oxygen isotope across monsoon Asia: Common signal and local influence: Quaternary Science Reviews, v. 269, article 107156.
    Xu, L., Wang, A., Yu, W., and Yang, S., 2021b, Hot spots of extreme precipitation change under 1.5 and 2°C global warming scenarios: Weather and Climate Extremes, v. 33, article 100357.
    Yin, S.-Y., Wang, T., Hua, W., Miao, J.-P., Gao, Y.-Q., Fu, Y.-H., Matei, D., Tyrlis, E., and Chen, D., 2020, Mid-summer surface air temperature and its internal variability over China at 1.5°C and 2°C global warming: Advances in Climate Change Research, v. 11, no. 3, p. 185-197.
    Yu, K.-F., Zhao, J.-X., Wei, G.-J., Cheng, X.-R., and Wang, P.-X., 2005, Mid–Late Holocene monsoon climate retrieved from seasonal Sr/Ca and δ18O records of Porites lutea corals at Leizhou Peninsula, northern coast of South China Sea: Global and Planetary Change, v. 47, no. 2, p. 301-316.
    Yuan, D., Cheng, H., Edwards, R. L., Dykoski Carolyn, A., Kelly Megan, J., Zhang, M., Qing, J., Lin, Y., Wang, Y., Wu, J., Dorale Jeffery, A., An, Z., and Cai, Y., 2004, Timing, Duration, and Transitions of the Last Interglacial Asian Monsoon: Science, v. 304, no. 5670, p. 575-578.
    Zhang, J., Chen, F., Holmes, J. A., Li, H., Guo, X., Wang, J., Li, S., Lü, Y., Zhao, Y., and Qiang, M., 2011, Holocene monsoon climate documented by oxygen and carbon isotopes from lake sediments and peat bogs in China: a review and synthesis: Quaternary Science Reviews, v. 30, no. 15, p. 1973-1987.
    Zou, J., Deng, W., Chen, X., Liu, X., Guo, Y., Cai, G., Xia, X., Yang, Q., Zhang, Y., Zeng, T., and Wei, G., 2021, Temperature control on high-resolution SIMS oxygen isotopic compositions in Porites coral skeletons: Solid Earth Sciences, v. 6, no. 2, p. 129-141.
    Zuo, X., Lu, H., Li, Z., Song, B., Xu, D., and Dai, J., 2020, Phytolith records of flourishing early Holocene Pooideae linked to an 8.2 ka cold event in subtropical China: Elementa, v. 8, no. 1.

    下載圖示
    QR CODE