簡易檢索 / 詳目顯示

研究生: 謝敏男
論文名稱: 熱處理對氧化銦錫薄膜特性之研究
The Effect of Heat Treatment on the Characteristics of ITO Thin Films
指導教授: 程金保
Cheng, Chin-Pao
劉傳璽
Liu, Chuan-His
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 90
中文關鍵詞: 熱處理氧化銦錫電阻率透光率
英文關鍵詞: Heat treatment, ITO, Resistivity, Transmittance
論文種類: 學術論文
相關次數: 點閱:273下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由射頻磁控濺射(RF Magnetron sputter)技術在P型矽上鍍上N型的ITO薄膜,沉積之後在不同的溫度及厚度條件下進行退火,並觀察薄膜結構與光電特性之變化。透過XRD來觀察薄膜的晶態結構,發現薄膜呈現非晶態結構,在熱退火後薄膜會朝向(222)的方向形成多晶成長的晶格排列。從光電特性中發現,所有ITO薄膜在波長400~900 nm下擁有將近90% 的透光率。能帶間隙大約介於3.47~3.73 eV,實驗顯示增加退火溫度,能帶間隙也會跟著增加,但是薄膜厚度增加,能帶間隙反而會跟著減少。在導電特性上,在100 nm的ITO薄膜於600℃以及純氮氣的退火環境下,可以得到最小片電組(24.79Ω/□)以及電阻率(2.48x10-4 Ωcm)。從電容-電壓特性曲線所量測到的電容大小,我們可以發現到,當ITO薄膜厚度為100 nm且600℃的退火條件下,可以得到較大的電容量(約為387.5 pF)以及較大的儲存電量。因此ITO薄膜擁有良好的特質並且適合做為太陽能電池方面的應用。

    N-type ITO thin films were deposited on p-Si at room temperature by RF sputtering in argon ambient. The thickness of ITO film ranges from 100 to 300 nm. After deposition, the films were annealed at 400, 500 or 600℃ and the heat treatment was performed in N2 ambient. This study investigates the effect of post-deposition heat treatment on structural, optical and electrical properties of the ITO films. The ITO films were of good quality and therefore suitable for applications in solar cells.

    第一章 緒論 1 1.1. 前言 1 1.2. 研究動機 2 第二章 文獻回顧與理論探討 3 2.1. 文獻回顧 3 2.2. 透明導電薄膜 6 2.2.1 薄膜材料簡介 6 2.2.2 導電性質 9 2.2.3 光學性質 12 2.2.4 能隙原理 16 2.3. 銦錫氧化物 18 2.3.1 特性 18 2.3.2 結構 20 2.4. 薄膜沉積 22 2.4.1 成核 24 2.4.2 晶粒成長 25 2.4.3 晶粒聚結 26 2.4.4 縫道填補與薄膜成長 27 2.5. 濺射鍍膜技術 29 2.5.1 直流濺鍍 30 2.5.2 射頻磁控濺鍍 32 2.6. 熱退火處理技術 34 2.6.1 快速熱退火 35 2.6.2 傳統高溫爐退火 37 2.6.3 雷射退火 38 第三章 實驗方法與步驟 39 3.1. 實驗步驟 40 3.1.1. 薄膜製作過程 40 3.1.2. 實驗分析方法 41 3.1.3. 薄膜試片結構 41 3.2. 薄膜製程設備 42 3.2.1. 射頻磁控濺鍍機 42 3.2.2. 快速熱退火設備 47 3.3. 實驗分析儀器 49 3.3.1. X光繞射分析儀 49 3.3.2. 可視光分光光譜儀 52 3.3.3. 四點探針量測技術 54 3.3.4. 電容電壓量測儀器 56 第四章 實驗結果與分析 57 4.1. 晶體結構之探討 57 4.2. 光學特性之探討 59 4.2.1. 退火溫度改變對透光率之影響 59 4.2.2. 薄膜厚度改變對透光率之影響 60 4.3. 能帶間隙之探討 62 4.3.1. 退火溫度改變對能隙之影響 62 4.3.2. 薄膜厚度改變對能隙之影響 64 4.4. 電傳導特性之探討 68 4.4.1. 退火溫度改變對電傳導特性影響 68 4.4.2. 薄膜厚度改變對電傳導特性之影響 71 4.5. 電容特性之探討 75 4.5.1. 退火溫度改變對電容特性之影響 75 4.5.2. 薄膜厚度改變對電容特性之影響 77 第五章 結論與未來展望 80 5.1 結論 80 5.2 未來展望 83 第六章 參考文獻 84

    1. K. Carl, H. Schmitt, I. Friedrich,“Optimization of sputtered ITO films with respect to the oxygen partial pressure and substrate temperature”, Thin Solid films, Volume 295, Pages 151-155, 1997.
    2. C. May, J. Strumpfel, “ITO coating by magnetron sputtering comparison of properties from DC and MF processing”, Thin solid films, Volume 351, Pages 48-52, 1999.
    3. W. Wu, B. Chiou, S. Hsieh, “Effect of sputtering power on the structural and optical properties of RF magnetron sputtered ITO films”, Semiconductor Science and Technology, Volume 9, Pages 1242-1249, 1994.
    4. L. Meng, M. P. dos Santos, “Properties of indium tin oxide(ITO) films prepared by r.f. reactive magnetron sputtering at different pressures”, Thin Solid fimls, Volume 303, Pages 151-155, 1997.
    5. M. Bender, W. Seelig, C. Daube, “Depandence of oxygen flow on optical and electrical properties of DC-magnetron sputtered ITO films”, Thin Solid Films, Volume 326, Pages 72-77, 1998.
    6. V. Senthilkumar, P. Vickraman, M. Jayachandran, C. Sanjeeviraja, “Structural and optical properties of indium tin oxide (ITO) thin films with different compositions prepared by electron beam evaporation”, Vacuum, Volume 84, Pages 864-869, 2010.
    7. G.S. Belo, B.J.P. da Silva, E.A. de Vasconcelos, W.M. de Azevedo, E.F. da Silva Jr., “A simplified reactive thermal evaporation method for indium tin oxide electrodes”, Applied Surface Science, Volume 255, Pages 755-757, 2008.
    8. J. Ma, D. Zhang, J. Zhao, C. Tan, T. Yang, H. Ma, “Preparation and characterization of ITO films deposited on polyimide by reactive evaporation at low temperature”, Applied Surface Science, Volume 151, Pages 239-243, 1999.
    9. C. Coutal, A. Azema, J. C. Roustan, “Fabrication and characterization of ITO thin films deposited by excimer laser evaporation”, Thin Solid Films, Volume 288, Pages 248-253, 1996.
    10. J. H. Lan, J. Kanicki, “ITO surface ball formation induced by atomic hydrogen in PECVD and HW-CVD tools”, Thin Solid Films, Volume 304, Pages 123-129, 1997.
    11. B. Mayer, “Highly conductive and transparent films of tin and fluorine doped indium oxide produced by APCVD”, Thin Solid Films, Volume 221, Pages 166-182, 1992.
    12. K. Maki, N. Komiya, A. Suzuki, “Fabrication of thin films of ITO by aerosol CVD”, Thin Solid Films, Volume 445, Pages 224-228. , 2003.
    13. T. F. Young, T. S. Liu, D. J. Jung, T. S. His, “Microstructural and electrical studies of nitrogen doped diamond thin films grown by microwave plasma CVD”, Surface and Coatings Technology, Volume 200, Pages 3145-3150, 2006.
    14. Z. H. Li, Y. P. Ke, D. Y. Ren, “Effects of heat treatment on morphological, optical and electrical properties of ITO films by sol-gel technique”, Transactions of Nonferrous Metals Society of China, Volume 18, Pages 366-371, 2008.
    15. M.J. Alam, D.C. Cameron, “Optical and electrical properties of transparent conductive ITO thin films deposited by sol-gel process”, Thin Solid Films, Volumes 377-378, Pages 455-459, 2000.
    16. R. Teghil, D. Ferro, A. Galasso, A. Giardini, V. Marotta, G.P. Parisi, A. Santagata, P. Villani, “Femtosecond pulsed laser deposition of nanostructured ITO thin films”, Materials Science and Engineering: C, Volume 27, Pages 1034-1037, 2007.
    17. F. Hanus, A. Jadin, L.D. Laude, “Pulsed laser deposition of high quality ITO thin films”, Applied Surface Science, Volumes 96-98, Pages 807-810, 1996.
    18. J. B. Choi, J. H. Kim, K. A. Jeon, S. Y. Lee, “Properties of ITO films on glass fabricated by pulsed laser deposition”, Materials Science and Engineering: B, Volume 102, Pages 376-379, 2003.
    19. A. M. Fox, M. Fox, Optical Properties of Solids, Oxford University Press, New York, 2001.
    20. Y. Shigesato, S. Takaki, T. Haranoh, “Electrical and structural properties of low resistivity tin‐doped indium oxide films”, Journal of Applied Physics, Volume 71, Pages 3356-3364, 1992.
    21. J. Liu, D. Wu, S. Zeng, “Influence of temperature and layers on the characterization of ITO films”, Journal of Materials Processing Technology, Volume 209, Pages 3943 – 3948, 2009.
    22. F. Kurdesau, G.. Khripunov, A.F.da Cunha, M. Kaelin, A. N.Tiwari, “Comparative study of ITO layers deposited by DC and RF magnetron sputtering at room temperature”, J. Non-Cryst. Solids., volume 352, Pages 466-1470, 2006.
    23. R. Balasundaraprabhu, E.V. Monakhov, N. Muthukumarasamy, O. Nilsen, B.G. Svensson, “Effect of heat treatment on ITO film properties and ITO/p-Si interface”, Materials Chemistry and Physics, Volume 114, Pages 425-429, 2009.
    24. S. Lien , “Characterization and optimization of ITO thin films for application in heterojunction silicon solar cells”, Thin Solid Films, Volume 518, Pages S10-S13, 2010.
    25. F. El Akkad, A. Punnoose, G. Prabu, “Properties of ITO films prepared by rf magnetron sputtering”, Materials Science & Processing, Volume 71, Pages 157-160, 2000.
    26. L.J. Meng, M. P. dos Santos, “Properties of indium tin oxide films prepared by rf reactive magnetron sputtering at different substrate temperature”, Thin Solid Films, Volume 322, Pages 56-62, 1998.
    27. H.M. Alia, H.A. Mohamed, S.H. Mohamed, “Enhancement of the optical and electrical properties of ITO thin films deposited by electron beam evaporation technique”, Eur. Phys. J. Appl. Phys, Volume 31, Pages 87-93, 2005.
    28. E. Bertran, C. Corbella, M. Vives, A. Pinyol, C. Person, I. Porqueras, “RF sputtering deposition of Ag/ITO coatings at room temperature”, Solid State Ionics, Volume 165, Page 139, 2003.
    29. K. Carl, H. Schmitt, I. Friedrich, “Optimization of sputtered ITO films with respect to the oxygen partial pressure and substrate temperature”, Thin Solid Films, Volume 295, Pages 151-155, 1997.
    30. M. Nisha, S. Anusha, Aldrin Antony, R. Manoj, M.K. Jayaraj, “Effect of substrate temperature on the growth of ITO thin films”, Applied Surface Science, Volume 252, Pages 1430-1435, 2005.
    31. V. Kumar, S.K. Sharma, T.P. Sharma, V. Singh, “Band gap determination in thick films from reflectance measurements”, Optical Materials, Volume 12, Pages 115-119, 1998.
    32. D.A. Neamen, Semiconductor Physics and Devices, Basic Principles, McGraw-Hill, 2003.
    33. J. Tauc, Amorphous and Liquid Semiconductor, Plenum Press, 1974.
    34. 楊明輝,“金屬氧化物透明導電材料的基本原理”,工業材料雜誌第179期,Pages 134-144,2001。
    35. 楊明輝,“透明導電膜材料與成模技術的新發展”,工業材料雜誌第189期,Pages 161-174,2002。
    36. 賴明雄、溫志中,“ITO濺鍍靶之開發與應用”,工業材料雜誌第179期,Pages 145-152,2002。
    37. 鄭信民,林麗娟,“X光繞射應用與簡介”, 工業材料雜誌第181期,Pages 100-108,2002。
    38. 楊澤邦,“軟性基板之有機太陽能電池製程研究”,國立清華大學電子工程研究所碩士論文,台灣,2007。
    39. 蔡宗典,“超薄ITO透明導電膜應用在觸控面板之研究”,國立中央大學光電科學研究所碩士論文,台灣,2008。
    40. 劉秀琴,張志祥,“ITO的回收再生及新型透明導電膜材料的近況發展”,工業材料雜誌第255期,2008。
    41. 王維政,“常溫濺鍍ITO透明導電薄膜性質之研究”,義守大學材料科學與工程學系碩士論文,台灣,2007。
    42. 李于豪,“低壓化學氣相沉積氧化鋅奈米線光電特性及成長機制之探討”,龍華科技大學工程技術研究所碩士論文,台灣,2007。
    43. 楊明輝,“透明導電膜”,藝軒圖書,2007。
    44. 羅吉宗,“薄膜科技與應用”,全華圖書,2009。
    45. 張勁燕,“半導體製程設備”,五南圖書,2011。
    46. 田民波,“薄膜技術與材料”,五南圖書,2007。
    47. 余樹禛,“晶體之結構與性質”,國立編譯館,1993。
    48. 劉傳璽,陳進來,“半導體元件物理與製程”,五南圖書,2006。
    49. 潘漢昌,“透明導電膜雷射退火製程”,儀科中心簡訊84期,2007。
    50. 莊達人,“VLSI製造技術”,高立圖書,2000。
    51. “Agilent B1500A Semiconductor Device Analysis Data Sheet”, Agilent Technologies Inc., 2012.

    QR CODE