簡易檢索 / 詳目顯示

研究生: 許怡謙
Hsu, Yi-Chien
論文名稱: 基於連續譜中準束縛態之窄頻高靈敏度折射率感測器
Narrowband and High Sensitivity Refractive-Index Sensors based on Quasi-Bound States in the Continuum
指導教授: 蕭惠心
Hsiao, Hui-Hsin
口試委員: 蕭惠心
Hsiao, Hui-Hsin
陳國平
Chen, Kuo-Ping
張世慧
Chang, Shih-Hui
口試日期: 2022/08/24
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 75
中文關鍵詞: 連續譜中的束縛態環境折射率生物感測器靈敏度品質因子
英文關鍵詞: bound states in the continuum, ambient refractive index, biosensors, sensitivity, quality factor
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202201626
論文種類: 學術論文
相關次數: 點閱:110下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究在玻璃基板上設計具有非對稱性的週期性奈米結構陣列,激發其連續光譜中的準束縛態,探討樣品在不同的環境折射率下所產生的共振位移特性,成功實現高靈敏度之近紅外波段感測器。此結構由兩個不對稱的非晶矽(Amorphous silicon,a-Si)長方柱所組成,通過改變成對奈米長方柱的旋轉角來破壞結構的平面對稱性,以激發連續光譜中的準束縛態,同時具環形磁偶極矩和電四極矩共振特徵,並在局部環境的折射量測到具有超高靈敏度變化。本文從模擬計算深入探討結構基於不同的旋轉角度,高度與壁直對共振光譜所產生的影響,並探討藉由模擬增加材料損耗k時不同旋轉角度下的頻譜差異,再利用電子束微影製程製作樣品。在靈敏度的測試上,我們分別在樣品上旋塗三種不同折射率的材料,在結構高度為450 nm下,實驗與模擬測得之靈敏度和品質因數達到608 nm/RIU和46與612 nm/RIU和85。本論文研究之連續譜中基於準束縛態的高品質因子生物感測器利用介電材料之奈米結構在穿透光譜中有特徵共振,隨著環境折射率不同而位移,造成穿透光譜中特徵共振位移及環境折射率改變之特性,故可應用於偵測氣體與液體之生物感測,亦或者可以利用radiation continuum中的BIC作為完美濾波器。

    This thesis studies the design of asymmnetric periodic nanostructures on glass substrates to excite the quasi bound state in the continuum (Q-BIC), investigates the resonant shift characteristics of the samples under different ambient refractive indices, and successfully realize the high sensitivity BIC sensors working in the near-infrared. The structure is composed of two asymmetric amorphous silicon (a-Si) nanorod pairs. By rotating the tilted angle of nanobar pairs, a Q-BIC mode was excited due to the breaking of in-plane symmetry and shows a dominant toroidal dipole (TD) and electric quadrupole (EQ) resonant feature with ultrahigh sensitivity in the refractometric monitoring of local environment changes. We first numerically studied the geometric effect of the structural rotation angle, height, and the straightness of the side-wall on the spectra as well as the inclusion of the extinction coefficient to the materials. Then, the sample were fabricated by the electron-beam lithography process. For the test of sensitivity, three different media were spin-coated on the top of the samples, and the measured (simulated) sensitivity and figure of merit for nanobar pairs with a height of 450 nm reaches 608 nm/RIU and 46 (612 nm/RIU and 85). The high quality factor biosensor based on quasi-bound state in the continuum studied in this thesis utilizes the nanostructure of dielectric materials to have characteristic resonance in the transmission spectrum, which shifts with the difference of the refractive index of the environment, resulting in the characteristic resonance in the transmission spectrum. The characteristic resonance shift and the change of the refractive index of the environment can be applied to biological sensing of gas and liquid, or can use the BIC in the radiation continuum as the perfect filter.

    第一章 緒論 1 1-1 連續光譜中的束縛態2 1-2 超穎材料7 1-3 金屬與介電質超穎介面 7 1-4 品質因子、靈敏度和Figure of merit (FOM) 11 1-5 各式BIC感測器13 1-6 論文概述18 第二章 數值計算及實驗製程19 2-1模擬軟體簡介19 2-1-1 CST簡介19 2-1-2 CST計算方式19 2-1-3多極矩展開(multipole scattering) 20 2-2實驗技術介紹22 2-2-1薄膜沉積技術(化學氣相沉積法和蒸鍍法) 22 2-2-2蝕刻技術26 2-2-3電子束微影製程設備30 2-3 實驗流程介紹32 2-3-1 基板清潔32 2-3-2沉積amophous silicon(a-si) 34 2-3-3奈米微影製程34 2-3-4頂部金屬遮罩沉積35 2-3-5去光阻過程35 2-3-6反應式蝕刻過程35 第三章 介電質超穎介面之連續光譜中的束縛態36 3-1 結構設計36 3-2 各結構參數對Q-BIC 模態與其共振品質因子的影響43 3-2-1旋轉角度對Q-BIC 模態與其Q值的影響43 3-2-2結構高度對Q-BIC 模態與其Q factor的影響46 3-2-3結構壁直對quasi-BIC 模態與其Q factor的影響46 3-2-4 結構縮放比例對BIC的影響47 3-2-5成對長立方柱的間距對MD-EQ 模態的影響48 3-3各結構參數對Q-BIC 模態感測靈敏度與的FOM影響49 3-3-1旋轉角度對元件感測靈敏度與FOM的影響51 3-3-2結構高度對元件感測靈敏度與FOM的影響51 3-3-3結構壁直對元件感測靈敏度與FOM的影響53 3-3-4 Q-BIC模態&MD-EQ模態的靈敏度比較54 3-4 在模擬計算中加入矽材料的損耗55 第四章 介電質超穎介面之製作及量測56 4-1結構設計與材料厚度製備56 4-2樣品實作成果57 4-3環境折射率58 4-3-1以不同濃度比例之甘油進行滴定58 4-3-2 以不同折射率溶液進行旋塗60 4-4 實驗頻譜分析63 4-5 靈敏度66 第五章 結論68 參考文獻69

    [1] C.W. Hsu, B. Zhen, A.D. Stone, J.D. Joannopoulos, M. Soljaˇci´c, Bound states in the continuum,Nat.Rev.Mater.1(9)(2016)16048.
    [2] A.S. Kupriianov, Y. Xu, A. Sayanskiy, V. Dmitriev, Y.S. Kivshar, V.R. Tuz, Metasurface Engineering through Bound States in the Continuum, Phys. Rev. Appl. 12 (1) (2019) 014024.
    [3] J. von Neumann, E.P. Wigner, Über merkwürdige diskrete Eigenwerte, Phys. Z. 30 (1929) 467–470
    [4] T. Kaelberer, V.A. Fedotov, N. Papasimakis, D.P. Tsai, N.I. Zheludev, Toroidal Dipolar Response in a Metamaterial, Science 330 (6010) (2010) 1510-1512.
    [5] Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, M. Segev, Experimental observation of optical bound states in the continuum, Phys. Rev. Lett. 107 (2011) 183901.
    [6] C.W. Hsu, B. Zhen, J. Lee, S.L. Chua, S.G. Johnson, J.D. Joannopoulos, M. Soljacic, Observation of trapped light within the radiation continuum, Nature 499 (7457) (2013) 188-191.
    [7] F. Urseel , Trapped modes in a circular cylindrical acoustic waveguide, Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci. 435 (1895) (1997) 575-589.
    [8] R. Porter, D.V. Evans, Embedded Rayleigh–Bloch surface waves along periodic rectangular arrays, Wave Motion 43 (1) (2005) 29-50.
    [9] Y.X. Xiao, G. Ma, Z.Q. Zhang, C.T. Chan, Topological Subspace-Induced Bound State in the Continuum, Phys. Rev. Lett. 118 (16) (2017) 166803.
    [10] C. H. Retzler, Trapped modes: an experimental investigation, Appl. Ocean Res. 23 (2001), 249.
    [11] P.J. Cobelli, V. Pagneux, A. Maurel, P. Petitjeans, Experimental observation of trapped modes in a water wave channel, Europhys. Lett. 88 (2) (2009) 20006.
    [12] P.J. Cobelli, V. Pagneux, A. Maurel, P. Petitjeans, Experimental study on water wave trapped modes, Journal of Fluid Mechanics, 666 (2011) 445-476.
    [13] C. Fang, Q. Yang, Q. Yuan, X. Gan, J. Zhao, Y. Shao, Y. Liu, G. Han, Y. Hao, High-Q resonances governed by the quasi-bound states in the continuum in all dielectric metasurfaces, Opto-Electron. Adv., 4 (6) (2021) 200030.
    [14] Kirill Koshelev, Andrey Bogdanov and Yuri Kivshar ,Engineering with Bound States in the Continuum, OPTICS & PHOTONICS NEWS (JANUARY 2020)
    [15] Chia Wei Hsu1, Bo Zhen, A. Douglas Stone1, John D. Joannopoulos and Marin Soljacic, Bound states in the continuum, NATURE REVIEWS MATERIALS, VOLUME 1 SEPTEMBER 2016.
    [16] Y. Yang, W. Wang, A. Boulesbaa, I.I. Kravchenko, D.P. Briggs, A. Puretzky, D. Geohegan, J. Valentine, Nonlinear Fano-Resonant Dielectric Metasurfaces. Nano Lett. 15 (11) (2015) 7388-7393.
    [17] X. Zhang, Q.T. Cao, Z. Wang, Y.X. Liu, C.W. Qiu, L. Yang, Q. Gong, Y.F. Xiao, Symmetry-breaking-induced nonlinear optics at a microcavity surface, Nature Photon. 13 (1) (2018) 21-24.
    [18] B. Sain, C. Meier, T. Zentgraf, Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review, Adv. Photon. 1 (02) (2019) 2577.
    [19] A. Tittl, A.K. Michel, M. Schaferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, H. Giessen, A Switchable Mid-Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability, Adv. Mater. 27 (31) (2015) 4597-4603.
    [20] D.Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R.F. Haglund, S.A. Maier, Optically-Triggered Nanoscale Memory Effect in a Hybrid Plasmonic-Phase Changing Nanostructure, ACS Photonics 2 (9) (2015) 1306-1313.
    [21] M. Zhong, A multi-band metamaterial absorber based on VO2 layer, Opt. Laser Technol. 139 (2021) 106930.
    [22] T.J. Cui, M.Q. Qi, X. Wan, J. Zhao, Q. Cheng, Coding metamaterials, digital metamaterials and programmable metamaterials, Light Sci. Appl. 3 (10) (2014) e218. [23] H. Zhang, X. Zhang, Q. Xu, C. Tian, Q. Wang, Y. Xu, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, W. Zhang, High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation, Adv. Opt. Mater. 6 (1) (2018) 1700773.
    [24] W. Liu, Q. Yang, Q. Xu, X. Jiang, T. Wu, K. Wang, J.Q. Gu, J.G. Han, W. Zhang, Multifunctional All‐Dielectric Metasurfaces for Terahertz Multiplexing, Adv. Opt. Mater. 9 (19) (2021) 2100506.
    [25] Z. Zhang, X. Zhang, Y. Xu, X. Chen, X. Feng, M. Liu, Q. Xu, M. Kang, J.G. Han, W. Zhang, Coherent Chiral‐Selective Absorption and Wavefront Manipulation in Single‐Layer Metasurfaces, Adv. Opt. Mater. 9 (3) (2020) 2001620.
    [26] J. Hao, Y. Yuan, L. Ran, T. Jiang, J.A. Kong, C.T. Chan, L. Zhou, Manipulating electromagnetic wave polarizations by anisotropic metamaterials, Phys Rev. Lett. 99 (6) (2007) 063908.
    [27] N.K. Grady, J.E. Heyes, D.R. Chowdhury, Y. Zeng, M.T. Reiten, A.K. Azad, A.J. Taylor, D.a.R. Dalvit, H.T. Chen, Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction, Science 340 (6138) (2013) 1304-1307.
    [28] R.T. Ako, W.S.L. Lee, S. Atakaramians, M. Bhaskaran, S. Sriram, W. Withayachumnankul, Ultra-wideband tri-layer transmissive linear polarization converter for terahertz waves, APL Photonics 5 (4) (2020) 046101.
    [29] Jitao Li, Jie Li, Chenglong Zheng, Zhen Yue, Silei Wang, Mengyao Li, Hongliang Zhao,Yating Zhang, Jianquan Yao, Free switch between bound states in the continuum (BIC) and quasi-BIC supported by graphene-metal terahertz metasurfaces, Carbon 182 (2021) 506-515.
    [30] Kirill Koshelev , Sergey Lepeshov , Mingkai Liu , Andrey Bogdanov , and Yuri Kivshar , Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum , PHYSICAL REVIEW LETTERS 121, 193903 (2018).
    [31] C. M. Soukoulis, M. Kafesaki, and E. N. Economou, "Negative-Index Materials: New Frontiers in Optics," Advanced materials 18, 1941-1952 (2006).
    [32] V. M. Shalaev, "Optical negative-index metamaterials," Nature photonics 1, 41-48 (2007).
    [33] Na Liu, Hui Liu, Shining Zhu & Harald Giessen. "Stereometamaterials" Nat. Photonics,vol. 3, pp. 157–162, 2009.
    [34] R. Zhao, L. Zhang, J. Zhou, Th. Koschny, and C. M. Soukoulis. "Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index" Phys. Rev. B, vol. 83, p. 035105, 2011.
    [35] J B Pendry, A J Holden, D J Robbins and W J Stewart. "Low frequency plasmons in thin-wire structures" Condensed Matter, vol. 10, pp. 4785–4809,1998.
    [36] D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz. "Composite Medium with Simultaneously Negative Permeability and Permittivity" Phys. Rev. Lett., vol. 84, pp. 4184–4187, 2000.
    [37] J. B. Pendry et al J.B. Pendry; A.J. Holden; D.J. Robbins; W.J. Stewart. "Magnetism from conductors and enhanced nonlinear phenomena" IEEE Trans. Microw. Theory Techn.,vol. 47, pp. 2075–2084, 1999.
    [38] V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of and?," Soviet physics uspekhi 10, 509 (1968).
    [39] Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: far-field imaging beyond the diffraction limit," Opt. Express 14, 8247-8256 (2006).
    [40] Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," science 315, 1686-1686 (2007).
    [41] S. Palomba, M. Danckwerts, and L. Novotny, "Nonlinear plasmonics with gold nanoparticle antennas," Journal of Optics A: Pure and Applied Optics 11, 114030 (2009).
    [42] J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, "Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing," Physical review letters 103, 266802 (2009).
    [43] J. B. Pendry, "Negative refraction makes a perfect lens," Physical review letters 85, 3966 (2000).
    [44] N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub–diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
    [45] S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic Response of Metamaterials at 100 Terahertz," Science 306, 1351-1353 (2004).
    [46] W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G.-Y. Guo, C. T. Hsiao, K.-Y. Yang, N. I. Zheludev, and D. P. Tsai, "Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules," Opt. Express 19, 12837-12842 (2011).
    [47] Kirill Koshelev , Sergey Lepeshov , Mingkai Liu , Andrey Bogdanov , and Yuri Kivshar , Supplemental Material : Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum, PHYSICAL REVIEW LETTERS 121, 193903 (2018).
    [48] XU CHEN, WENHUI FAN, AND HUI YAN, Toroidal dipole bound states in the continuum metasurfaces for terahertz nanofilm sensing, Vol. 28, No. 11 / 25 May 2020 / Optics Express
    [49] LEI YANG, SHILIN YU, HAO LI, AND TONGGANG ZHAO, Multiple Fano resonances excitation on all-dielectric nanohole arrays metasurfaces, Vol. 29, No. 10 / 10 May 2021 / Optics Express.
    [50]https://zh.wikipedia.org/zhcn/%E5%93%81%E8%B3%AA%E5%9B%A0%E5%AD%90.
    [51] Shaozhe Song, Shilin Yu, Hao Li and Tonggang Zhao , Ultra-high Q-factor toroidal dipole resonance and magnetic dipole quasi-bound state in the continuum in an all-dielectric hollow metasurface , Laser Phys. 32 (2022) 025403.
    [52] Juan Wang, Julius Kühne, Theodosios Karamanos, Carsten Rockstuhl, Stefan A. Maier, and Andreas Tittl , All-Dielectric Crescent Metasurface Sensor Driven by Bound States in the Continuum , 10.1002 adfm.(2021)04652.
    [53] Xiyu Long , Ming Zhang , Zhengwei Xie , Mingjun Tang , Ling Li , Sharp Fano resonance induced by all-dielectric asymmetric metasurface , Optics Communications 459 (2020) 124942.
    [54] Yajun Zhong, a Lianghui Du,bc Qiao Liu,bc Liguo Zhu,bc Kun Meng,b Yi Zoub and Bin Zhang, Ultrasensitive specific sensor based on all-dielectric metasurfaces in the terahertz range, RSC Adv., 2020, 10, 33018.
    [55] E. Radescu and G. Vaman, "Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles," Physical Review E 65, 046609 (2002).
    [56] V. Savinov, V. Fedotov, and N. Zheludev, "Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials," Physical Review B 89, 205112 (2014).
    [57] https://zhuanlan.zhihu.com/p/26671405.
    [58] Bangtao Chen, Francis E.H.Tay and Ciprian Iliescu,Development of thick film PECVD Amorphous silicon with low stress for MEMS applications, Proc. of SPIE Vol. 7269 72690M-2(2008).
    [59] G. Y. Zhang and E. G. Wang,Cu-filled carbon nanotubes by simultaneous plasma-assisted copper incorporation, American Institute of Physics(2003).
    [60] https://plasma.oxinst.cn/campaigns/technology/rie.
    [61] https://plasma.oxinst.cn/campaigns/technology/icp.
    [62]https://baike.baidu.com/item/%E5%8F%8D%E5%BA%94%E7%A6%BB%E5%AD%90%E5%88%BB%E8%9A%80/4902522?fromtitle=RIE&fromid=7855422
    [63] K. Koshelev, S. Lepeshov, M. K. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
    [64] S. Li, C. Zhou, T. Liu, and S. Xiao, “Symmetry-protected bound states in the continuum supported by all-dielectric metasurfaces,” Phys. Rev. A 100(6), 063803 (2019).
    [65]https://refractiveindex.info/?shelf=other&book=pmma_resists&page=Microchem950
    [66] https://www.nanophys.kth.se/nanolab/resists/zep520a-7-2.pdf
    [67]Jie Wang, Jinzhe Yang, Hongwei Zhao and Min Chen,Quasi-BIC-governed light absorption of monolayer transition-metal dichalcogenide-based absorber and its sensing performance, J. Phys. D: Appl. Phys. 54 485106 2021.
    [68] Peter A. Jeong, Michael D. Goldflam, Salvatore Campione, Jayson L. Briscoe,
    High Quality Factor Toroidal Resonances in Dielectric Metasurfaces, ACS Photonics, June 2020.
    [69] Chenyu Peng, Chuhuan Feng, Ji Xia, Christopher Yap and Guangya Zhou, Near-infrared Fano resonance in asymmetric silicon metagratings, J. Opt. 22 095102, 2020.
    [70] Yulin Wang, Zhanghua Han, Yong Du and Jianyuan Qin, Ultrasensitive terahertz sensing with high-Q toroidal dipole resonance governed by bound states in the continuum in all-dielectric metasurface, nanoph-2020-0582
    [71] Lei Yang, ShiLin Yu, Hao Li, and TongGang Zhao, Multiple Fano resonances excitation on all-dielectric nanohole arrays metasurfaces, Optics Express Vol. 29, Issue 10, pp. 14905-14916 (2021)
    [72] Juan Wang,Julius Kühne,Theodosios Karamanos,Carsten Rockstuhl,Stefan A. Maier, All-Dielectric Crescent Metasurface Sensor Driven by Bound States in the Continuum, Adv.Funct.Mater,2021,31, 2104652.Mater,2021,31, 2104652

    無法下載圖示 本全文未授權公開
    QR CODE