研究生: |
翁聖凱 Sheng-Kai Weng |
---|---|
論文名稱: |
以Memetic Algorithm為基礎的向量量化器在可程式化系統晶片上之實現 SoPC-based Memetic Algorithm for Vector Quantizer Design |
指導教授: |
黃文吉
Hwang, Wen-Jyi |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 基因法則 、系統晶片設計 、向量量化器 、可程式化邏輯閘陣列 |
英文關鍵詞: | GA, SOPC, VQ, FPGA |
論文種類: | 學術論文 |
相關次數: | 點閱:299 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個以Memetic Algorithm(MA)為基礎的向量量化器(VQ)硬體架構;此架構中以steady-state Genetic Algorithm (GA)做全域搜尋,並採用C-means演算法進行局部改善;硬體架構中包含族群記憶體單元(population memory unit)、交配突變單元(crossover and mutation unit)、C-means單元以及生存測試更新單元( survival test and update unit);在架構中採用了以移位暫存器(Shift register)為基礎的交配突變單元,來加快交配突變運算的執行。除此之外,設計了一個pipeline架構來實現C-means單元;最後將MA電路結合軟核心(softcore)CPU並實際測量硬體電路效能。實驗的結果顯示,所提出的向量量化器(VQ)硬體架構對於VQ的最佳化是擁有高效能表現以及少量計算時間的優點。
A novel hardware architecture for memetic vector quantizer (VQ) design is presented in this thesis. The architecture uses steady-state genetic algorithm (GA) for global search, and C-means algorithm for local refinement. It adopts a shift register based circuit for accelerating mutation and crossover operations in the steady state GA. It also uses a pipeline architecture for the hardware implementation of C-means algorithm. The proposed architecture has been embedded in a softcore CPU for physical performance measurement. Experimental results show that the proposed architecture is an effective alternative for VQ optimization attaining both high performance and low computational time.
[1] Choi, Y. H., and Chng, D. J., "VLSI Processor of Parallel Genetic Algorithm," IEEE Asia Pacific Conf. on ASICs, pp.143-146,2000.
[2] Eiben, A. E., and Smith, J. D., Introduction to Evolutionary Computing, Springer, 2003.
[3] Gersho, A., and Gray, R. M., Vector Quantization and Signal Compression, Kluwer, Norwood, Massachusetts, 1992.
[4] Hwang, W.J., Li, H.Y., Yeh, Y.J. and Chan, K.F., “Genetic entropy-constrained vector quantization,” Optical Engineering, Vol. 38, pp.233-239, 1999.
[5] Hwang, W.J., Li, H.Y., Yeh, Y.J. and Chan, K.F., “FPGA Implementation of Competitive Learning with Partial Distance Search in the Wavelet Domain,” Progress in Neurocomputing Research, pp.203-221, NOVA Science Publisher, 2008.
[6] Hauck, S., and Dehon, A., Reconfigurable Computing, Morgan Kaufmann, 2008.
[7] Mitchell, M., An introduction to genetic algorithm, MIT press, 1996.
[8] Nedjah, N., and Mourelle, L., “Hardware Architecture for Genetic Algorithms,” Lecture Notes in Computer Science, pp. 554-556, Vol.3533, 2005.
[9] Rasheed, K., and Davisson, B. D., “Effect of global parallelism on the behavior of a steady state genetic algorithm for design optimization,” In Proceedings of the Congress on Evolutionary Computation , Washington, DC, 1999.
[10] Tommiska, M., and Vuori, J., “Implementation of genetic algorithms with programmable logic devices,” Proc. 2nd Nordic Workshop on Genetic Algorithms and Their Applications, pp. 111-126, 1996.
[11] Stratix II Device Handbook, 2008, Altera Corporation. http:// www.altera.com/ literature/ lit-nio2.jsp.
[12] NIOS II Processor Reference Handbook, 2008, Altera Corporation.
http: //www.altera.com/ literature/ lit-nio2.jsp.
[13] Lin, T.K., Li, H.Y., Hwang, W.J., Ou, C.M., and Weng, S.K., “Genetic Vector Quantizer Design on Reconfigurable Hardware ,“ Lecture Notes in Computer Science, pp. 473-482, Vol.5361, 2008.
[14] 蔡汶錫,結合基因與C-Means演算法則之向量量化器設計之研究,台灣師範大學碩士論文,民97年。