研究生: |
施建富 Shih Jian-Fu |
---|---|
論文名稱: |
PDMS微反應器應用於金奈米微粒合成之研製 Development of a PDMS microreactor fabricated for synthesizing Au nanoparticles |
指導教授: |
楊啓榮
Yang, Chii-Rong |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 161 |
中文關鍵詞: | 金奈米微粒 、SIGA製程 、PDMS微反應器 、矽模 、界面活性劑 、白金微加熱器 |
英文關鍵詞: | gold nanoparticles, SIGA process, PDMS microreactor, silicon mold, surfactant, Pt microheater |
論文種類: | 學術論文 |
相關次數: | 點閱:256 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米微粒(nanoparticles)之研製為目前奈米科技重要的一環,其中金奈米微粒由於大小、光學性質、表面化學性質及無毒等特性,故被廣泛應用於光電科技、生醫檢測方面的研究。也因此近年來相關金米微粒的研製皆朝向如何提高微粒粒徑的均勻度及大小的可控性發展。
與傳統巨觀反應器相較,PDMS微反應器具有生物相容性高、可控性佳、可批次化生產及易於觀測等優點,預期將能改善傳統合成法之粒徑分佈不均、控制不精確等問題,達成反應器控制精確及金奈米微粒可批次生產等目的。因此本研究特以微機電中之SIGA製程技術,研製PDMS微反應器(microreactor),並由流體數值分析(computational fluidic dynamics, CFD)軟體的模擬結果得知,研究中所設計之微反應流道流率在150 ul/min~370 ul/min的範圍內有較佳的混合效果。
於矽模的蝕刻過程中,藉由添加界面活性劑(surfactant) Br+IPA於非等向性濕式蝕刻(anisotropic wet etching)蝕刻液之技術,改善使用單一添加劑時的缺點,使得蝕刻底切比率降低至0.563,蝕刻粗糙度達到23.48nm,成功蝕刻出所需之矽模。最後將完成之元件實際進行金奈米微粒的混製,在13~14 V的電壓驅動下,白金微加熱器能提供約120 ℃之加熱溫度,達到反應所需之熱能,並且在注射幫浦注射流率為8 ul/min的條件下,成功混製出吸收波長約為545 nm之金奈米微粒。
The making of nanoparticles is important of nano-technologies in present. Gold nanoparticles have been widely used in the fields of opto-electric and bio-inspecting technologies, because it’s size, optical properties, surface chemical properties, and nonpoisonous characteristics. Therefore, the related techniques for preparing gold nanoparticles are requested to high monodispersity and controllability of particle diameters recently.
Compared with the traditional reactor, PDMS microreactor has advantages of high biocompatibility, easily controlled and observed, and batch production, which can significantly improve the drawbacks of poor average particle diameters and imprecise controlled, to reach the purposes of reactor controlled in accuracy and gold nanoparticles can be produced in batches. Therefore, the present work fabricated the microreactor by SIGA technology of MEMS. By the aid of the software CFD (computational fluidic dynamics) analysis in simulation, there was a better result of mixing when the range of microchannel flow rate is 150 to 370 ul/min.
In the etching processes in silicon mold, using the technique of adding surfactant (Br + IPA) in anisotropic wet etching can improve the defect of using single additive. It lowered the etching undercut ratio to 0.563 and roughness to 23.48 nm, and get the good silicon mold successfully. Synthesizing the gold nanoparticles, the Pt microheater in the microreactor gave the voltage was 13 to 14 V could provide the heating temperature about 120 ℃, and synthesized the absorption wavelength was 545 nm successfully when injected rate of dual-syringe infusion pump was 8 ul/min.
1.楊啟榮 等人, "微機電系統技術與應用", 精密儀器發展中心, 第四章, pp. 142-143 (2003).
2.Kubo, R. J. Phys. SOC. Japan, Vol. 17, pp. 975 (1962).
3.A. P. Alivisatos, "Perspectives on the physical chemistry of semiconductor nanocrystals", Journal of Physical Chemistry, Vol. 100, pp. 13226-13239 (1996).
4.劉俊鴻, "金、銀、鈀及其合金之奈米顆粒的合成與應用", 國立台灣大學碩士論文, 台灣, pp.2 (2002).
5.Fendler, J. H., Chem. Rev., Vol. 87, pp. 877 (1987).
6.M. Haruta, Catal. Today, Vol. 36, pp. 153 (1997).
7.董慕愷、陳郁文, "奈米金觸媒", 科學發展月刊, 行政院國家科學委員會, 390期, pp. 46-49 (2005).
8.R. Jin, Y. W. CaO, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, "Photoinduced conversion of silver nanoprisms", Science, Vol. 294, (2001).
9.R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, "Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles", Science, Vol. 277, pp. 1078-1080 (1997).
10.葉瑞銘 編著, "奈米科技導論", 高立圖書有限公司, pp. 345 (2004).
11.N. Toshima and T. Yonezawa, "Bimetallic nanoparticles - Novel Materials for Chemical and Physical Applications", New Journal of Chemistry, pp. 1179-1201 (1998).
12.吳明立, "微乳化系統製備雙金屬奈米粒子之研究", 國立成功大學博士論文, 台灣, (2001).
13.Faraday, M. Philos. Trans. R. Soc. London 147, pp. 145-181 (1857).
14.Schmid, G. Cluster and Colloids; VCH, Weinheim, (1994).
15.馬振基 主編, "奈米材料科技原理與應用", 全華科技圖書股份有限公司出版, (2003).
16.M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, J. Chem. Soc., Chem. Commun., pp. 801 (1994).
17.K. C. Grabar, R. C. Freeman, M.B. Hommer, and M. J. Natan, Anal. Chem., Vol. 67, pp. 735 (1995).
18.V. K. La Mer and R. H. Dinegar, "Theory, production and mechanism of formation of monodispersed hydrosols", Journal of the American Chemical Society, Vol. 72, pp. 4847-4854 (1950).
19.John and A. deMello, "Microscale reactors: nanoscale products", Lab on a Chip, Vol. 4, pp. 11-15 (2004).
20.C. D. Dushkin, S. Saita, K. Yoshie, and Y. Yamaguchi, "The kinetics of growth of semiconductor nanocrystals in a hot amphiphile matrix", Advances in Colloid and Interface Science, Vol. 88, pp. 37-78 (2000).
21.A. L. Rogach, A. Kornowski, M. Gao, A. Eychmuller, and H. Weller, "Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals", The Journal of Physical Chemistry B , Vol. 103, pp. 3065-3069 (1999).
22.T. Schwalbe, V. Autze, and G. Wille, "Chemical synthesis in microreactors", CHIMIA, Vol. 56, pp. 636-646 (2002).
23.John and A. deMello, "Microscale reactors: nanoscale products", Lab on a Chip, Vol. 4, pp. 11-15 (2004).
24.J. B. Edel, R. Fortt, J. C. deMello and A. J. deMello, "Microfluidic routes to the controlled production of nanoparticles", Chemical Communications, Vol. 10, pp. 1136–1137 (2002).
25.N. T. Nguyen and Z. Wu, "Micromixers—a review", J. Micromech. Microeng. 15, pp. 1-16 (2005).
26.鍾震桂 等人, "微機電系統技術與應用", 精密儀器發展中心, 第五章, pp. 321-361 (2003).
27.H. Nakamura, Y. Yamaguchi, M. Miyazaki, M. Uehara, H. Maeda, and P. Mulvaney, "Continuous Preparation of CdSe Nanocrystals by a Microreactor", Chemistry Letters, Vol. 31, pp. 1072–1073 (2002).
28.H. Nakamura, Y. Yamaguchi, M. Miyazaki, H. Maeda, M. Uehara and P. Mulvaney, "Preparation of CdSe nanocrystals in a micro-flow-reactor", Chemical Communications, Vol. 23, pp. 2844–2845 (2002).
29.H. Wang, X. Li, M. Uehara, Y. Yamaguchi, H. Nakamura, M. Miyazaki, H. Shimizu, and H. Maeda, "Continuous synthesis of CdSe–ZnS composite nanoparticles in a microfluidic reactor", Chemical Communications, Vol. 1, pp. 48-49 (2004).
30.H. Nakamura, A. Tashiro, Y. Yamaguchi, M. Miyazaki, T. Watari, H. Shimizua, and H. Maeda, "Application of a microfluidic reaction system for CdSe nanocrystal preparation: their growth kinetics and photoluminescence analysis", Lab on a Chip, Vol. 4, pp. 237-240 (2004).
31.B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, "Three-Dimensional Micro-Channel Fabrication in Polydimethylsiloxane (PDMS) Elastomer", Journal of Microelectromechanical systems, Vol. 9, pp. 76-81 (2000).
32.M. Seki, R. Aoyama, J. W. Hong, T. Fujii, and I. Endo, "Multiple Diagnostic Analyses By Enzymatic And Chemical Reaction On A PDMS Microchip", IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, pp. 21-24 (2000).
33.S. H. Kim, E. A. Cherney, and R. Hackam, "Effect of dry band arcing on the surface of RTV silicon rubber coatings", IEEE International Symposium on Electrical Insulation, pp. 237-240 (1992).
34.H. C. Zeringue, I. K. Glasgow, D. J. Beebe, J. T. Lyman, and M. B. Wheeler "Micro fluidic single embryo culture systems in PDMS", IEEE-BMES/EMBS Conference, pp. 85 (1991).
35.D. Armani and C. Liu, "Re-configurable Fluid Circuits By PDMS Elastomer Micromachining", IEEE MEMS Conf. 99, pp. 222-227 (1999).
36.C. R. Yang, P. Y. Chen, C. H. Yang, Y. C. Chiou, and R. T. Lee, "Effects of various ion-typed surfactants on silicon anisotropic etching properties in KOH and TMAH solutions", Sensors and Actuators A, Vol. 119, pp. 271-281 (2005).
37.H. R. Robbins and B. Schwartz, "Chemical etching of silicon-I. The system HF, HNO3, H2O, and HC2C3O2", J. Electrochem, Soc., Vol. 106, No. 6, pp. 505-508 (1959).
38.H. R. Robbins and B. Schwartz, "Chemical etching of silicon-II. The system HF, HNO3, H2O, and HC2C3O2", J. Electrochem, Soc., Vol. 107, No. 2, pp. 108-111 (1960).
39.B. Schwartz and H. R. Robbins, "Chemical etching of silicon-III. A temperature study in the acid system", J. Electrochem. Soc., Vol. 108, No. 4, pp. 365-372 (1961).
40.G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, "Bulk Micromachining of Silicon", Proceedings of the IEEE, Vol. 86, No. 8, pp.1536-1551 (1998).
41.M. Elwenspoek, "The form of etch rate minima in wet chemical anisotropic etching of silicon", Journal of Micromechanical and Microengineering, Vol. 6, pp. 405-409 (1996).
42.B. Schwartz and H. R. Robbins, "Chemical etching of silicon-IV. Etching technology", J. Electrochem. Soc., Vol. 123, No. 12, pp. 1903-1909 (1976).
43.A. F. Bogenschutz, W. Krusemark, K. H. Locherer, and W. Mussinger, "Activation energies in the chemical etching if semiconductors in HNO3-HF-CH3COOH", J. Electrochem. Soc. Solid State, Vol. 114, No. 9, pp. 970-973 (1997).
44.D. L. Kendall, "On etching very narrow grooves in silicon", Applied Physics Letters, Vol. 26, pp. 195-198 (1975).
45.K. E. Bean, "Anisotropic etching of silicon", IEEE Transactions on Electron Devices, Vol. ED-25, No. 10, (1978).
46.H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, "Anisotropic etching of crystalline silicon in alkaline solution-Part I. Orientation dependence and behavior of passivation layer", J. Electrochem. Soc., Vol. 137, No. 11, pp. 3612-3626 (1990).
47.H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, "Anisotropic etching of crystalline silicon in alkaline solution-Part II. Influence of dopants", J. Electrochem. Soc., Vol. 137, No. 11, pp. 3626-3632 (1990).
48.C. Scheibe and E. Obermeier, "Compensating corner undercutting in anisotropic etching of (100) Silicon for chip separation", J. Micromech. Microeng. No 5, pp. 109-111 (1995).
49.O. Tabata, "Anisotropy and selectivity control of TMAH", Journal of Micro Electro Mechanical Systems, MEMS’98 Proceedings, pp. 229-233 (1999).
50.O. Tabata, R. Asahi, H. Funabashi, and S. Sugiyama, "Anisotropic etching of silicon in TMAH solutions", Sensors and Actuators A 34, pp. 51-57 (1992).
51.http://www.kaz.mech.nagoya-u.ac.jp/
52.K. Sato, M. Shikida, Y. Matsushima, T. Yamashiro, K. Asaumi, Y. Iriye, and M. Yamamoto, "Characterization of orientation-dependent etching properties of single-crystal silicon: effects of KOH concentration", Sensors and Actuators A 64, pp. 87-93 (1998).
53.K. Sato, M. Shikida, T. Yamashiro, M. Tsunekawa, and S. Ito, "Roughness of single-crystal silicon surface etched by KOH water solution", Sensors and Actuators A 73, pp. 122-130 (1999).
54.K. Sato, M. Shikida, T. Yamashiro, K. Asaumi, Y. Iriye, and M. Yamamoto, "Anisotropic etching rates of single-crystal silicon for TMAH water solution as a function of crystallographic orientation", Sensors and Actuators A 73, pp. 131-137 (1999).
55.M. Shikida, K. Sato, K. Tokoro, and D. Uchikawa, "Differences in anisotropic properties of KOH and TMAH solutions", Sensors and Actuators A 80, pp. 179-188 (2000).
56.I. Zubel, M. Kramkowska, "The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions", Sensors and Actuators A 93, pp. 138-147 (2001).
57.S. A. Campbell, K. Cooper, L. Dixon, R. Earwaker, and S. N. Port, "Inhibition of pyramid formation in the etching of Si P <100> in aqueous potassium hydroxide–isopropanol", Journal of Micromech. Microeng., 5, pp. 209-218 (1995).
58.T. Baum and D. J. Schiffrin, "AFM study of surface finish improvement by ultrasound in the anisotropic etching of Si <100> in KOH for micromachining applications", Journal of Micromech. Microeng. , Vol. 4, pp. 338-342 (1997).
59.R. Divan, N. Moldovan, and H. Camon, "Roughning and smoothing dynamics during KOH silicon etching", Sensors and Actuators A , Vol. 74, pp.18-23 (1999).
60.A. Merlos, M. C. Acero, M. H. Bao, J. Bausells, and J. Esteve, "TMAH/IPA anisotropic etching characteristics", Sensors and Actuator A, Vol. 37-38, pp. 737-743 (1993).
61.G. S. Chung, "Anisotropic etching characteristics of silicon in TMAH:IPA:pyrazine solutions", Sensors Materials, Vol. 12, No. 3, pp. 133-142 (2000).
62.K. Lian, B. Stark, A. M. Gundlach, and A. J. Walton, "Aluminum passivation for TMAH based anisotropic etching for MEMS applications", Elecronics Letters, Vol. 35, No. 15, pp. 1266-1267 (1999).
63.M. Sekimura, "Anisotropic etching of surfactant-added TMAH solution", Proc. 12th Int.Conf. on MEMS’99, pp. 650-655 (1999).
64.E. M. Chan, R. A. Mathies, and A. P. Alivisatos, "Size-controlled growth of CdSe nanocrystals in microfluidic reactors", Nano Letters, Vol. 3, pp. 199-201 (2003).
65.王奕婷, "流體在微渠道流動之數值模擬", 國立中山大學碩士論文, 台灣, (2003).
66.John K. Vennard, Robert L. Street, "Elementary fluid mechanics", Wiley-Veh, New York, (1982).
67.唐隆綾, "微反應晶片應用於硒化鎘奈米微粒合成之研製", 國立台灣師範大學碩士論文, 台灣, (2005).
68.G. F. Wislicenus, "Fluid mechanics of turbomachinery", Dover Publications, McGraw-Hill, New York, (1965).
69.Ho, C-M, Tai, Y-C, "Micro-electro-mechanical system (MEMS) and fluid flows", Annual Review of Fluid Mechanics, Vol. 30, pp. 579-612 (1998).
70.Ho, C-M, Tai, Y-C, "MEMS and its application for flowcontrol", Journal of Fluids Engineering, Vol. 118, pp. 437-447 (1996).
71.N. Schwesinger, T. Frank, and H. Wurmus, "A modular microfluid system with an integrated micromixer", J. Micromech. Microeng., Vol. 6, pp. 99-102 (1996).
72.J. Branebjerg, P. Gravesen, J. Krog, and C. R. Nielsen, "Fast mixing by lamination", Journal of Micro Electro Mechanical Systems, MEMS’ 96 Proceedings, pp. 441-446 (1996).
73.R. H. Liu, M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref, and D. J. Beebe, "Passive mixing in a three-dimensional serpentine microchannel", Journal of Microelectromechanical System, Vol. 9, pp. 190-197 (2000).
74.R. H. Liu, M. Ward, J. Bonanno, D. Ganser, M. Athavale, and P. Grodzinski, "Plastic in-line chaotic micromixer for biological applications", Proceedings of the μ-TAS 2001 Symposium, pp. 163-164 (2001).
75.F. J. Bueche and D. A. Jerde, "Principles of physics", McGraw-Hill, New York, (1995).
76.S. Chang and Y. H. Cho, "Static nmicromixers using alternating whirls and lamination", J. Micromech. Microeng., Vol. 15, pp. 1397-1405 (2005).
77.陳柏穎, "矽晶圓非等向性濕式蝕刻特性研究", 國立中山大學機械與機電工程研究所碩士論文, 台灣, (2003).
78.A. M. Christensen, D. A. Chang-Yen, and B. K. Gale, "Characterization of interconnects used in PDMS microfluidic systems", Journal of Micromechanics and Microengineering, Vol. 15, pp. 928-934 (2005).
79.M. Koch, K. Witt, A. G. Evans, and A. Brunnschweiler, "Improved characterization technique for micromixers", Journal of Micromechanics and Microengineering, Vol. 9, pp. 156-158 (1999).
80.J. Wagner and J. M. Köhler, "Continuous synthesis of gold nanoparticles in a microreactor", Nano letters, Vol. 5, No. 4, pp. 685-691 (2005).
81.A. Merlos, M. Acero, M. H. Bao, J. Bausells, and J. Esteve, "TMAH/IPA anisotropic etching characteristics", Sens. Actuators, A 37-38, pp. 737-743 (1993).
82.P. M. Sarro, D. Brida, W. Vlist, and S. Brida, "Effect of surfactant on surface quality of silicon microstructures etched in saturated TMAHW solutions", Sens. Actuators, Vol. 85, pp. 340-345 (2000).
83.M. A. Hayat, "Colloidal gold—principle", Methods and Applications, Vol. І, Academic Press, San Diego/New York/Berkeley/Boston (1989).