簡易檢索 / 詳目顯示

研究生: 施建富
Shih Jian-Fu
論文名稱: PDMS微反應器應用於金奈米微粒合成之研製
Development of a PDMS microreactor fabricated for synthesizing Au nanoparticles
指導教授: 楊啓榮
Yang, Chii-Rong
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 161
中文關鍵詞: 金奈米微粒SIGA製程PDMS微反應器矽模界面活性劑白金微加熱器
英文關鍵詞: gold nanoparticles, SIGA process, PDMS microreactor, silicon mold, surfactant, Pt microheater
論文種類: 學術論文
相關次數: 點閱:256下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米微粒(nanoparticles)之研製為目前奈米科技重要的一環,其中金奈米微粒由於大小、光學性質、表面化學性質及無毒等特性,故被廣泛應用於光電科技、生醫檢測方面的研究。也因此近年來相關金米微粒的研製皆朝向如何提高微粒粒徑的均勻度及大小的可控性發展。
    與傳統巨觀反應器相較,PDMS微反應器具有生物相容性高、可控性佳、可批次化生產及易於觀測等優點,預期將能改善傳統合成法之粒徑分佈不均、控制不精確等問題,達成反應器控制精確及金奈米微粒可批次生產等目的。因此本研究特以微機電中之SIGA製程技術,研製PDMS微反應器(microreactor),並由流體數值分析(computational fluidic dynamics, CFD)軟體的模擬結果得知,研究中所設計之微反應流道流率在150 ul/min~370 ul/min的範圍內有較佳的混合效果。
    於矽模的蝕刻過程中,藉由添加界面活性劑(surfactant) Br+IPA於非等向性濕式蝕刻(anisotropic wet etching)蝕刻液之技術,改善使用單一添加劑時的缺點,使得蝕刻底切比率降低至0.563,蝕刻粗糙度達到23.48nm,成功蝕刻出所需之矽模。最後將完成之元件實際進行金奈米微粒的混製,在13~14 V的電壓驅動下,白金微加熱器能提供約120 ℃之加熱溫度,達到反應所需之熱能,並且在注射幫浦注射流率為8 ul/min的條件下,成功混製出吸收波長約為545 nm之金奈米微粒。

    The making of nanoparticles is important of nano-technologies in present. Gold nanoparticles have been widely used in the fields of opto-electric and bio-inspecting technologies, because it’s size, optical properties, surface chemical properties, and nonpoisonous characteristics. Therefore, the related techniques for preparing gold nanoparticles are requested to high monodispersity and controllability of particle diameters recently.
    Compared with the traditional reactor, PDMS microreactor has advantages of high biocompatibility, easily controlled and observed, and batch production, which can significantly improve the drawbacks of poor average particle diameters and imprecise controlled, to reach the purposes of reactor controlled in accuracy and gold nanoparticles can be produced in batches. Therefore, the present work fabricated the microreactor by SIGA technology of MEMS. By the aid of the software CFD (computational fluidic dynamics) analysis in simulation, there was a better result of mixing when the range of microchannel flow rate is 150 to 370 ul/min.
    In the etching processes in silicon mold, using the technique of adding surfactant (Br + IPA) in anisotropic wet etching can improve the defect of using single additive. It lowered the etching undercut ratio to 0.563 and roughness to 23.48 nm, and get the good silicon mold successfully. Synthesizing the gold nanoparticles, the Pt microheater in the microreactor gave the voltage was 13 to 14 V could provide the heating temperature about 120 ℃, and synthesized the absorption wavelength was 545 nm successfully when injected rate of dual-syringe infusion pump was 8 ul/min.

    總 目 錄 摘要...................................................Ⅰ 總目錄.................................................Ⅱ 表目錄.................................................Ⅳ 圖目錄.................................................Ⅴ 符號對照表.............................................IX 第一章 緒論............................................1 1.1 前言..............................................1 1.2 奈米微粒簡介.......................................4 1.3 金奈米微粒之特性與應用..............................6 1.4 研究動機與目的.....................................10 第二章 文獻回顧........................................11 2.1 金奈米微粒之合成...................................11 2.2 應用於化學合成之微反應器............................19 2.3 PDMS微反應器......................................26 2.4 非等向性濕式蝕刻角落攻擊之抑制.......................30 第三章 微反應器之分析與設計...............................38 3.1 微流道之流體力學....................................38 3.1.1 微混合原理........................................39 3.1.2 微加熱與微溫度感測原理..............................41 3.2 微反應器之設計......................................45 3.2.1 微混合器之設計.....................................45 3.2.2 微溫控模組之設計...................................46 3.3 微混合區域之特性模擬.................................54 3.4 微混合區域之模擬結果.................................57 第四章 實驗製程與檢測規劃..................................63 4.1 微反應器之製程規劃...................................63 4.1.1 製程規劃...........................................63 4.1.2 微反應器之特性檢測..................................67 4.2 金奈米微粒之合成與粒徑檢測............................72 4.3 實驗設備與檢測系統...................................74 第五章 實驗結果與討論......................................85 5.1 微反應器製程.........................................85 5.1.1 SIGA製程...........................................85 5.1.2 PDMS翻模製程.......................................88 5.1.3 氧電漿接合..........................................89 5.1.4 金屬加熱器與溫度感測電極製作...........................89 5.1.5 PDMS微流道與溫控模組接合.............................89 5.2 微反應器特性量測......................................103 5.2.1 混合效率測試........................................103 5.2.2 熱電阻加熱特性測試...................................103 5.2.3 微反應器合成之金奈米微粒測試..........................104 第六章 結論...............................................109 6.1 本文結論.............................................109 6.2 未來展望.............................................110 參考文獻..................................................111 表 目 錄 表1-1 微機電系統技術之分類................................3 表2-1 奈米微粒常見之製備方法..............................14 表2-2 金奈米微粒常見的化學製備方法.........................14 表2-3 常用於生醫晶片之高分子材料特性比較....................22 表3-1 常用金屬之電阻溫度係數和熱膨脹係數....................42 表3-2 乙醇與水之物理特性..................................56 表3-3 不同格點數之流道各斷面乙醇濃度分佈的標準差值比較........58 表3-4 乙醇濃度之標準差值降低比率...........................58 表4-1 實驗設備...........................................76 表5-1 濺鍍金屬鉑/鈦之實驗參數..............................90 圖 目 錄 圖1-1 金屬與半導體奈米微粒能隙圖............................5 圖1-2 奈米金觸媒之應用.....................................8 圖1-3 由不同尺寸及形狀的金及銀奈米粒子所搭配而成的標示配套組合..8 圖1-4 金奈米微粒偵測溶液中特殊DNA序列之示意圖................9 圖2-1 奈米微粒常見之製備方法示意圖.........................15 圖2-2 靜電排斥力.........................................16 圖2-3 立體障礙...........................................16 圖2-4 奈米微粒成核、成長其間溶質濃度與時間之變化關係圖........17 圖2-5 傳統奈米微粒之製備環境...............................17 圖2-6 奈米微粒粒徑大小篩選示意圖...........................18 圖2-7 微混合器分類系統圖..................................23 圖2-8 硒化鎘奈米微粒微反應系統示意圖........................24 圖2-9 3-D被動式微混合器...................................24 圖2-10 微反應晶片實驗量測系統示意圖.........................25 圖2-11 PDMS化學結構式.....................................28 圖2-12 (a)單晶矽非等向性蝕刻矽模;(b)翻模後之PDMS結構.......28 圖2-13 蝕刻底切現象抑制:(a) 抑制前;(b)抑制後..............29 圖2-14 等向性蝕刻示意圖...................................33 圖2-15 半球型矽試片示意圖:(a) 蝕刻前;(b) 蝕刻後............33 圖2-16 單晶矽各晶格方向之表面粗糙度輪廓圖:(a) KOH;(b) TMAH..33 圖2-17 單晶矽各晶格方向之蝕刻速率輪廓圖:(a) KOH;(b) TMAH...34 圖2-18 以KOH和KOH+IPA蝕刻液蝕刻矽晶片表面形貌...............34 圖2-19 以TMAH和TMAH+IPA蝕刻液蝕刻矽晶片表面形貌.............35 圖2-20 不同添加劑應用於10 wt. % TMAH蝕刻液之溫度與平均粗糙度關係圖(△: Pure TMAH, ○: TMAH+SDSS, ◇: TMAH +PEG and □: TMAH +ASPEG)...................................................36 圖2-21 不同添加劑應用於10 wt. % TMAH蝕刻液蝕刻(100)晶片之溫度與蝕刻速率關係圖.............................................36 圖2-22 加入非離子型界面活性劑的TMAH蝕刻液之蝕刻結果:(a)島塊陣列;(b)蛇狀流道............................................37 圖3-1 流體流動現象之示意圖................................43 圖3-2 被動式表面擴散混和器混合程序.........................43 圖3-3 (a) C型立體結構之彎曲微管道;(b)方波狀微流道;(c)直線微流道.......................................................44 圖3-4 微反應器與合成金奈米微粒製程圖........................48 圖3-5 微反應器功能架構....................................49 圖3-6 微混合器之立體示意圖................................49 圖3-7 光罩佈局(layout)全景圖..............................50 圖3-8 微混合器上、下流道細部之圖案及接合位置示意圖...........51 圖3-9 PDMS微反應流道接合..................................52 圖3-10 微加熱器擺放的位置..................................52 圖3-11 微加熱器與溫度感測器的幾何形狀........................53 圖3-12 微混合器之立體模型..................................56 圖3-13 微流道在不同格點數時,各斷面的混合效率.................59 圖3-14 在流率為100µl/min,流道格點數不同之乙醇濃度空間分佈圖..60 圖3-15 微流道在不同流率時,各斷面的混合效率..................61 圖3-16 輸入流率分別為(a) 50 µl/min、(b) 100 µl/min、(c) 200 µl/min、(d) 600 µl/min和(e) 1000 µl/min之乙醇濃度空間分佈...62 圖4-1 微反應器製程圖......................................69 圖4-2 非等向濕式蝕刻技術蝕刻之底切現象......................70 圖4-3 PDMS澆模模具.......................................70 圖4-4 挖通連接管用之孔洞..................................71 圖4-5 經氧電漿處理後PDMS之表面化學反應.....................71 圖4-6 黃光微影製程設備....................................78 圖4-7 真空濺鍍製程設備....................................79 圖4-8 工具顯微鏡暨影像量測與儲存系統........................80 圖4-9 表面形貌量測儀......................................80 圖4-10 長工作距離光學顯微鏡................................81 圖4-11 掃描式電子顯微鏡....................................81 圖4-12 熱處理爐...........................................82 圖4-13 電源供應器.........................................82 圖4-14 注射式幫浦.........................................83 圖4-15 紅外線熱像儀.......................................83 圖4-16 紫外光/可見光吸收光譜儀.............................84 圖5-1 10 wt.% TMAH蝕刻液添加BR,於濁點狀態下之蝕刻結果:(a) 整體表面粗糙度;(b) 山丘狀結構之凸塊...........................91 圖5-2 添加IPA後之10 wt.% TMAH+BR蝕刻液蝕刻結果............92 圖5-3 蝕刻液之底切抑制效果比較:(a) TMAH+BR+IPA;(b) TMAH+IPA ..........................................93 圖5-4 蝕刻液之凸塊抑制效果比較:(a) TMAH+BR+IPA;(b) TMAH+IPA ..........................................94 圖5-5 添加24 vol.% IPA後之10 wt.% TMAH+BR蝕刻液蝕刻結果:(a) 上視圖;(b)局部視圖;(c)局部放大視圖.........................96 圖5-6 電鑄完成之鎳微模仁整體模板全景圖......................96 圖5-7 電鑄完成之鎳金屬結構................................97 圖5-8 PDMS壓製專用模具...................................97 圖5-9 PDMS壓模實際情況...................................98 圖5-10 PDMS固化製程.......................................98 圖5-11 翻製完成之PDMS微流道:(a)上微流道;(b)下微流道........99 圖5-12 翻製完成之PDMS微流道SEM圖..........................100 圖5-13 結合完成之PDMS微流道...............................100 圖5-14 PDMS微流道接合斷面.................................101 圖5-15 金屬加熱器與溫度感測電極............................101 圖5-16 PDMS微流道與溫控模組接合...........................102 圖5-17 微反應器混合效率測試...............................106 圖5-18 混合流道放大圖....................................106 圖5-19 紅外線熱分佈圖.....................................107 圖5-20 溫度3D分佈圖......................................107 圖5-21 在不同流率下所合成之金奈米微粒溶液...................108 圖5-22 六種不同流率下所收集之金奈米微粒溶液紫外光/可見光吸收光譜圖 .................................................108

    1.楊啟榮 等人, "微機電系統技術與應用", 精密儀器發展中心, 第四章, pp. 142-143 (2003).
    2.Kubo, R. J. Phys. SOC. Japan, Vol. 17, pp. 975 (1962).
    3.A. P. Alivisatos, "Perspectives on the physical chemistry of semiconductor nanocrystals", Journal of Physical Chemistry, Vol. 100, pp. 13226-13239 (1996).
    4.劉俊鴻, "金、銀、鈀及其合金之奈米顆粒的合成與應用", 國立台灣大學碩士論文, 台灣, pp.2 (2002).
    5.Fendler, J. H., Chem. Rev., Vol. 87, pp. 877 (1987).
    6.M. Haruta, Catal. Today, Vol. 36, pp. 153 (1997).
    7.董慕愷、陳郁文, "奈米金觸媒", 科學發展月刊, 行政院國家科學委員會, 390期, pp. 46-49 (2005).
    8.R. Jin, Y. W. CaO, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, "Photoinduced conversion of silver nanoprisms", Science, Vol. 294, (2001).
    9.R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, "Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles", Science, Vol. 277, pp. 1078-1080 (1997).
    10.葉瑞銘 編著, "奈米科技導論", 高立圖書有限公司, pp. 345 (2004).
    11.N. Toshima and T. Yonezawa, "Bimetallic nanoparticles - Novel Materials for Chemical and Physical Applications", New Journal of Chemistry, pp. 1179-1201 (1998).
    12.吳明立, "微乳化系統製備雙金屬奈米粒子之研究", 國立成功大學博士論文, 台灣, (2001).
    13.Faraday, M. Philos. Trans. R. Soc. London 147, pp. 145-181 (1857).
    14.Schmid, G. Cluster and Colloids; VCH, Weinheim, (1994).
    15.馬振基 主編, "奈米材料科技原理與應用", 全華科技圖書股份有限公司出版, (2003).
    16.M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, J. Chem. Soc., Chem. Commun., pp. 801 (1994).
    17.K. C. Grabar, R. C. Freeman, M.B. Hommer, and M. J. Natan, Anal. Chem., Vol. 67, pp. 735 (1995).
    18.V. K. La Mer and R. H. Dinegar, "Theory, production and mechanism of formation of monodispersed hydrosols", Journal of the American Chemical Society, Vol. 72, pp. 4847-4854 (1950).
    19.John and A. deMello, "Microscale reactors: nanoscale products", Lab on a Chip, Vol. 4, pp. 11-15 (2004).
    20.C. D. Dushkin, S. Saita, K. Yoshie, and Y. Yamaguchi, "The kinetics of growth of semiconductor nanocrystals in a hot amphiphile matrix", Advances in Colloid and Interface Science, Vol. 88, pp. 37-78 (2000).
    21.A. L. Rogach, A. Kornowski, M. Gao, A. Eychmuller, and H. Weller, "Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals", The Journal of Physical Chemistry B , Vol. 103, pp. 3065-3069 (1999).
    22.T. Schwalbe, V. Autze, and G. Wille, "Chemical synthesis in microreactors", CHIMIA, Vol. 56, pp. 636-646 (2002).
    23.John and A. deMello, "Microscale reactors: nanoscale products", Lab on a Chip, Vol. 4, pp. 11-15 (2004).
    24.J. B. Edel, R. Fortt, J. C. deMello and A. J. deMello, "Microfluidic routes to the controlled production of nanoparticles", Chemical Communications, Vol. 10, pp. 1136–1137 (2002).
    25.N. T. Nguyen and Z. Wu, "Micromixers—a review", J. Micromech. Microeng. 15, pp. 1-16 (2005).
    26.鍾震桂 等人, "微機電系統技術與應用", 精密儀器發展中心, 第五章, pp. 321-361 (2003).
    27.H. Nakamura, Y. Yamaguchi, M. Miyazaki, M. Uehara, H. Maeda, and P. Mulvaney, "Continuous Preparation of CdSe Nanocrystals by a Microreactor", Chemistry Letters, Vol. 31, pp. 1072–1073 (2002).
    28.H. Nakamura, Y. Yamaguchi, M. Miyazaki, H. Maeda, M. Uehara and P. Mulvaney, "Preparation of CdSe nanocrystals in a micro-flow-reactor", Chemical Communications, Vol. 23, pp. 2844–2845 (2002).
    29.H. Wang, X. Li, M. Uehara, Y. Yamaguchi, H. Nakamura, M. Miyazaki, H. Shimizu, and H. Maeda, "Continuous synthesis of CdSe–ZnS composite nanoparticles in a microfluidic reactor", Chemical Communications, Vol. 1, pp. 48-49 (2004).
    30.H. Nakamura, A. Tashiro, Y. Yamaguchi, M. Miyazaki, T. Watari, H. Shimizua, and H. Maeda, "Application of a microfluidic reaction system for CdSe nanocrystal preparation: their growth kinetics and photoluminescence analysis", Lab on a Chip, Vol. 4, pp. 237-240 (2004).
    31.B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, "Three-Dimensional Micro-Channel Fabrication in Polydimethylsiloxane (PDMS) Elastomer", Journal of Microelectromechanical systems, Vol. 9, pp. 76-81 (2000).
    32.M. Seki, R. Aoyama, J. W. Hong, T. Fujii, and I. Endo, "Multiple Diagnostic Analyses By Enzymatic And Chemical Reaction On A PDMS Microchip", IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, pp. 21-24 (2000).
    33.S. H. Kim, E. A. Cherney, and R. Hackam, "Effect of dry band arcing on the surface of RTV silicon rubber coatings", IEEE International Symposium on Electrical Insulation, pp. 237-240 (1992).
    34.H. C. Zeringue, I. K. Glasgow, D. J. Beebe, J. T. Lyman, and M. B. Wheeler "Micro fluidic single embryo culture systems in PDMS", IEEE-BMES/EMBS Conference, pp. 85 (1991).
    35.D. Armani and C. Liu, "Re-configurable Fluid Circuits By PDMS Elastomer Micromachining", IEEE MEMS Conf. 99, pp. 222-227 (1999).
    36.C. R. Yang, P. Y. Chen, C. H. Yang, Y. C. Chiou, and R. T. Lee, "Effects of various ion-typed surfactants on silicon anisotropic etching properties in KOH and TMAH solutions", Sensors and Actuators A, Vol. 119, pp. 271-281 (2005).
    37.H. R. Robbins and B. Schwartz, "Chemical etching of silicon-I. The system HF, HNO3, H2O, and HC2C3O2", J. Electrochem, Soc., Vol. 106, No. 6, pp. 505-508 (1959).
    38.H. R. Robbins and B. Schwartz, "Chemical etching of silicon-II. The system HF, HNO3, H2O, and HC2C3O2", J. Electrochem, Soc., Vol. 107, No. 2, pp. 108-111 (1960).
    39.B. Schwartz and H. R. Robbins, "Chemical etching of silicon-III. A temperature study in the acid system", J. Electrochem. Soc., Vol. 108, No. 4, pp. 365-372 (1961).
    40.G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, "Bulk Micromachining of Silicon", Proceedings of the IEEE, Vol. 86, No. 8, pp.1536-1551 (1998).
    41.M. Elwenspoek, "The form of etch rate minima in wet chemical anisotropic etching of silicon", Journal of Micromechanical and Microengineering, Vol. 6, pp. 405-409 (1996).
    42.B. Schwartz and H. R. Robbins, "Chemical etching of silicon-IV. Etching technology", J. Electrochem. Soc., Vol. 123, No. 12, pp. 1903-1909 (1976).
    43.A. F. Bogenschutz, W. Krusemark, K. H. Locherer, and W. Mussinger, "Activation energies in the chemical etching if semiconductors in HNO3-HF-CH3COOH", J. Electrochem. Soc. Solid State, Vol. 114, No. 9, pp. 970-973 (1997).
    44.D. L. Kendall, "On etching very narrow grooves in silicon", Applied Physics Letters, Vol. 26, pp. 195-198 (1975).
    45.K. E. Bean, "Anisotropic etching of silicon", IEEE Transactions on Electron Devices, Vol. ED-25, No. 10, (1978).
    46.H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, "Anisotropic etching of crystalline silicon in alkaline solution-Part I. Orientation dependence and behavior of passivation layer", J. Electrochem. Soc., Vol. 137, No. 11, pp. 3612-3626 (1990).
    47.H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, "Anisotropic etching of crystalline silicon in alkaline solution-Part II. Influence of dopants", J. Electrochem. Soc., Vol. 137, No. 11, pp. 3626-3632 (1990).
    48.C. Scheibe and E. Obermeier, "Compensating corner undercutting in anisotropic etching of (100) Silicon for chip separation", J. Micromech. Microeng. No 5, pp. 109-111 (1995).
    49.O. Tabata, "Anisotropy and selectivity control of TMAH", Journal of Micro Electro Mechanical Systems, MEMS’98 Proceedings, pp. 229-233 (1999).
    50.O. Tabata, R. Asahi, H. Funabashi, and S. Sugiyama, "Anisotropic etching of silicon in TMAH solutions", Sensors and Actuators A 34, pp. 51-57 (1992).
    51.http://www.kaz.mech.nagoya-u.ac.jp/
    52.K. Sato, M. Shikida, Y. Matsushima, T. Yamashiro, K. Asaumi, Y. Iriye, and M. Yamamoto, "Characterization of orientation-dependent etching properties of single-crystal silicon: effects of KOH concentration", Sensors and Actuators A 64, pp. 87-93 (1998).
    53.K. Sato, M. Shikida, T. Yamashiro, M. Tsunekawa, and S. Ito, "Roughness of single-crystal silicon surface etched by KOH water solution", Sensors and Actuators A 73, pp. 122-130 (1999).
    54.K. Sato, M. Shikida, T. Yamashiro, K. Asaumi, Y. Iriye, and M. Yamamoto, "Anisotropic etching rates of single-crystal silicon for TMAH water solution as a function of crystallographic orientation", Sensors and Actuators A 73, pp. 131-137 (1999).
    55.M. Shikida, K. Sato, K. Tokoro, and D. Uchikawa, "Differences in anisotropic properties of KOH and TMAH solutions", Sensors and Actuators A 80, pp. 179-188 (2000).
    56.I. Zubel, M. Kramkowska, "The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions", Sensors and Actuators A 93, pp. 138-147 (2001).
    57.S. A. Campbell, K. Cooper, L. Dixon, R. Earwaker, and S. N. Port, "Inhibition of pyramid formation in the etching of Si P <100> in aqueous potassium hydroxide–isopropanol", Journal of Micromech. Microeng., 5, pp. 209-218 (1995).
    58.T. Baum and D. J. Schiffrin, "AFM study of surface finish improvement by ultrasound in the anisotropic etching of Si <100> in KOH for micromachining applications", Journal of Micromech. Microeng. , Vol. 4, pp. 338-342 (1997).
    59.R. Divan, N. Moldovan, and H. Camon, "Roughning and smoothing dynamics during KOH silicon etching", Sensors and Actuators A , Vol. 74, pp.18-23 (1999).
    60.A. Merlos, M. C. Acero, M. H. Bao, J. Bausells, and J. Esteve, "TMAH/IPA anisotropic etching characteristics", Sensors and Actuator A, Vol. 37-38, pp. 737-743 (1993).
    61.G. S. Chung, "Anisotropic etching characteristics of silicon in TMAH:IPA:pyrazine solutions", Sensors Materials, Vol. 12, No. 3, pp. 133-142 (2000).
    62.K. Lian, B. Stark, A. M. Gundlach, and A. J. Walton, "Aluminum passivation for TMAH based anisotropic etching for MEMS applications", Elecronics Letters, Vol. 35, No. 15, pp. 1266-1267 (1999).
    63.M. Sekimura, "Anisotropic etching of surfactant-added TMAH solution", Proc. 12th Int.Conf. on MEMS’99, pp. 650-655 (1999).
    64.E. M. Chan, R. A. Mathies, and A. P. Alivisatos, "Size-controlled growth of CdSe nanocrystals in microfluidic reactors", Nano Letters, Vol. 3, pp. 199-201 (2003).
    65.王奕婷, "流體在微渠道流動之數值模擬", 國立中山大學碩士論文, 台灣, (2003).
    66.John K. Vennard, Robert L. Street, "Elementary fluid mechanics", Wiley-Veh, New York, (1982).
    67.唐隆綾, "微反應晶片應用於硒化鎘奈米微粒合成之研製", 國立台灣師範大學碩士論文, 台灣, (2005).
    68.G. F. Wislicenus, "Fluid mechanics of turbomachinery", Dover Publications, McGraw-Hill, New York, (1965).
    69.Ho, C-M, Tai, Y-C, "Micro-electro-mechanical system (MEMS) and fluid flows", Annual Review of Fluid Mechanics, Vol. 30, pp. 579-612 (1998).
    70.Ho, C-M, Tai, Y-C, "MEMS and its application for flowcontrol", Journal of Fluids Engineering, Vol. 118, pp. 437-447 (1996).
    71.N. Schwesinger, T. Frank, and H. Wurmus, "A modular microfluid system with an integrated micromixer", J. Micromech. Microeng., Vol. 6, pp. 99-102 (1996).
    72.J. Branebjerg, P. Gravesen, J. Krog, and C. R. Nielsen, "Fast mixing by lamination", Journal of Micro Electro Mechanical Systems, MEMS’ 96 Proceedings, pp. 441-446 (1996).
    73.R. H. Liu, M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref, and D. J. Beebe, "Passive mixing in a three-dimensional serpentine microchannel", Journal of Microelectromechanical System, Vol. 9, pp. 190-197 (2000).
    74.R. H. Liu, M. Ward, J. Bonanno, D. Ganser, M. Athavale, and P. Grodzinski, "Plastic in-line chaotic micromixer for biological applications", Proceedings of the μ-TAS 2001 Symposium, pp. 163-164 (2001).
    75.F. J. Bueche and D. A. Jerde, "Principles of physics", McGraw-Hill, New York, (1995).
    76.S. Chang and Y. H. Cho, "Static nmicromixers using alternating whirls and lamination", J. Micromech. Microeng., Vol. 15, pp. 1397-1405 (2005).
    77.陳柏穎, "矽晶圓非等向性濕式蝕刻特性研究", 國立中山大學機械與機電工程研究所碩士論文, 台灣, (2003).
    78.A. M. Christensen, D. A. Chang-Yen, and B. K. Gale, "Characterization of interconnects used in PDMS microfluidic systems", Journal of Micromechanics and Microengineering, Vol. 15, pp. 928-934 (2005).
    79.M. Koch, K. Witt, A. G. Evans, and A. Brunnschweiler, "Improved characterization technique for micromixers", Journal of Micromechanics and Microengineering, Vol. 9, pp. 156-158 (1999).
    80.J. Wagner and J. M. Köhler, "Continuous synthesis of gold nanoparticles in a microreactor", Nano letters, Vol. 5, No. 4, pp. 685-691 (2005).
    81.A. Merlos, M. Acero, M. H. Bao, J. Bausells, and J. Esteve, "TMAH/IPA anisotropic etching characteristics", Sens. Actuators, A 37-38, pp. 737-743 (1993).
    82.P. M. Sarro, D. Brida, W. Vlist, and S. Brida, "Effect of surfactant on surface quality of silicon microstructures etched in saturated TMAHW solutions", Sens. Actuators, Vol. 85, pp. 340-345 (2000).
    83.M. A. Hayat, "Colloidal gold—principle", Methods and Applications, Vol. І, Academic Press, San Diego/New York/Berkeley/Boston (1989).

    無法下載圖示 本全文未授權公開
    QR CODE