簡易檢索 / 詳目顯示

研究生: 黃美琳
Huang, Mei-Lin
論文名稱: 基於深度學習發展自動車道置中控制應用於多車交通情況之自主駕駛
Deep Learning Based Automated Lane Centering Control for Autonomous Driving in Multi-Vehicle Traffic Situation
指導教授: 蔣欣翰
Chiang, Hsin-Han
王偉彥
Wang, Wei-Yen
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 58
中文關鍵詞: 自主駕駛車道居中控制運動規劃駕駛行為模仿深度學習
英文關鍵詞: Autonomous driving, lane centering control, motion planning, imitating driver behavior, deep learning
DOI URL: http://doi.org/10.6345/NTNU202100368
論文種類: 學術論文
相關次數: 點閱:190下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,自駕車已展現出在道路安全方面帶來重大改進的潛力。同時,許多基於人工智慧的自動駕駛技術被提出,用於從人類數據中學習駕駛任務。然而,針對複雜交通情況下的無人車,要達到人類水平的可靠性和安全反應是一項挑戰。
    本文提出了一種自動車道對中系統的深度學習系統,該系統能夠處理多車互動場景。為了避免學習良好駕駛策略的障礙,尤其是在現有端到端方法中使用有限的專家駕駛數據的情況下,我們的系統將自動駕駛控制分為速度和轉向規劃器。此外,為了應對由於高度動態的交通場景和道路用戶交互而造成的複雜性,本論文使用強化學習架構來訓練這兩個規劃器,即使從其真實環境中收集到的數據有限,也可以有效地改善自動駕駛策略。本研究主要目標為,開發的自動車道居中系統可以通過練習新收集的數據和更新駕駛技術表示來模仿駕駛員的行為,從而提高其性能。為此,本研究使用CarSim車輛模擬軟體以及Python進行協同模擬,用於從人類駕駛員模型中學習複雜的駕駛技能的過程。實驗結果驗證了該方法在多車輛交通場景中的良好性能。實驗表明,在具有不同車輛和路況的不同軌道上,車道置中控制具有穩定而準確的性能。

    In recent years, autonomous vehicles have exhibited the potential to bring major improvements in road safety. Meanwhile, a range of autonomous driving technologies based on artificial intelligence are presented for learning the driving tasks from human data. However, designing for autonomous vehicles under complex traffic situations reveals challenging to reach human-level reliability and safe reaction.
    This thesis proposes a deep learning framework for the automatic lane centering system, which is able to handle multi-vehicle interactive scenarios. In order to avoid the obstacles for learning a good driving policy especially with limited expert driving data in existing end-to-end methods, our system breaks the autonomous driving control into a speed planner and a steering planner. Further, to confront the complexity due to highly dynamic traffic scenarios and road user interaction, a reinforcement learning framework is utilized to train these two planners so that the autonomous driving policy can be efficiently improved even with a limited collected data from the its real environment. In our main goal, the developed automatic lane centering system can improve its performance by imitating the driver behavior through practicing and updating the driving skill representation using the newly gathered data. To this end, this study builds a co-simulation platform between CarSim and Python for learning process of sophisticated driving skills from human driver models. The experimental results validate the promising performance of the proposed approach in multi-vehicle traffic scenarios. The conducted experiments with the comparison analysis of the learned system also show the stable and accurate generalization in lane centering control across various tracks with different vehicles and road conditions.

    誌 謝 i 摘 要 ii ABSTRACT iv 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 4 1.3 論文架構 5 第二章 文獻探討 6 2.1 側向控制器 6 2.2 縱向控制 9 2.3 增強式學習(Reinforcement Learning, RL) 10 2.4 模仿式學習 12 2.5 自動編碼器(Autoencoder) 16 2.6 卷積自動編碼器(Convolutional Autoencoder, CAE) 16 第三章 車道居中控制設計 18 3.1 系統架構 18 3.2 轉向模型 19 3.3 速度模型 21 3.4 安全檢查機制 22 3.5 訓練方法 24 3.6 最佳化演算法選取 25 第四章 實驗與結果 27 4.1 模擬軟體 27 4.2 協同模擬 28 4.3 車輛規格 31 4.4 結果與分析 31 第五章 結論 54 5.1 結論 54 5.2 未來展望 55 參考文獻 56

    [1]警政統計通報, “108年A1類道路交通事故肇事原因與肇事者特性分析”, URL: https://www.npa.gov.tw/NPAGip/wSite/ct?xItem=96367&ctNode=12594&mp=1
    [2]SAE Standard J3016: Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems, 2018, USA, saemobilus.sae.org/content/j3016_201806, [20180615]
    [3]S. Yu, X. Li, H. Chen, and F. Allgöwer,. (2013). Nonlinear model predictive control for path following problems. International Journal of Robust and Nonlinear Control. 25. 10.1002/rnc.3133.
    [4]M Bujarbaruah, X. Zhang, and E. Tseng, and Borrelli, Francesco. (2018). Adaptive MPC for Autonomous Lane Keeping
    [5]S. Xu and H. Peng, "Design, Analysis, and Experiments of Preview Path Tracking Control for Autonomous Vehicles," in IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 1, pp. 48-58, Jan. 2020, doi: 10.1109/TITS.2019.2892926.
    [6]S. Xu, H. Peng and Y. Tang, "Preview Path Tracking Control With Delay Compensation for Autonomous Vehicles," in IEEE Transactions on Intelligent Transportation Systems, doi: 10.1109/TITS.2020.2978417.
    [7]O. Derbel, T. Peter, H. Zebiri, B. Mourllion, M. Basset, “Modified Intelligent Driver Model for driver safety and traffic stability improvement,” IFAC Proceedings Volumes, Volume 46, Issue 21, 2013, Pages 744-749, ISSN 1474-6670, ISBN 9783902823489, https://doi.org/10.3182/20130904-4-JP-2042.00132.
    [8]G. M. Hoffmann, C. J. Tomlin, M. Montemerlo and S. Thrun, “Autonomous Automobile Trajectory Tracking for Off-Road Driving: Controller Design, Experimental Validation and Racing,” 2007 American Control Conference, New York, NY, 2007, pp. 2296-2301.
    [9]P.G. Gipps,“A Behavioural Car-Following Model for Computer Simulation,” Transportation Research Part B: Methodological, Elsevier, vol. 15(2), pp.105-111, April 1981.
    [10]S. Nageshrao, H. E. Tseng and D. Filev, "Autonomous Highway Driving using Deep Reinforcement Learning," 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 2019, pp. 2326-2331, doi: 10.1109/SMC.2019.8914621..
    [11]J. Chen, B. Yuan and M. Tomizuka, “Deep Imitation Learning for Autonomous Driving In Generic Urban Scenarios with Enhanced Safety,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 2019, pp. 2884-2890.
    [12]J. Chen, B. Yuan and M. Tomizuka, "Model-free Deep Reinforcement Learning for Urban Autonomous Driving," IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 2019, pp. 2765-2771.
    [13]J. Masci, U. Meier, D. Ciresan, and J. Schmidhuber, “Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction,” ICANN 2011 International Conference on Artificial Neural Networks, Espoo, Finland, June 14-17, 2011, Proceedings, Part I, pp.52-59
    [14]Transport information and control systems — Forward vehicle collision warning systems — Performance requirements and test procedures. ISO 15623:2002(E)
    [15]C. Szegedy et al., "Going Deeper with Convolutions," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, 2015, pp. 1-9.
    [16]K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp. 770-778.
    [17]J. Duchi, E. Hazan, and Y. Singer, “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization.” The Journal of Machine Learning Research, 12:2121–2159, 2011.
    [18]T. Tieleman, and G. Hinton, Lecture 6.5 - RMSProp, COURSERA: Neural Networks for Machine Learning. Technical report, 2012.
    [19]P. Kingma and J. Li. “Adam: A Method for Stochastic Optimization,” CoRR abs/1412.6980 (2015): n. pag.
    [20]A. Geiger, P. Lenz and R. Urtasun, “Are We Ready for Autonomous Driving? The KITTI Vision Benchmark Suite,” Conference on Computer Vision and Pattern Recognition (CVPR), 2012
    [21]K. Lee, S. E. Li and D. Kum, "Synthesis of Robust Lane Keeping Systems: Impact of Controller and Design Parameters on System Performance," in IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 8, pp. 3129-3141, Aug. 2019.
    [22]International Organization for Standardization , ISO 2631-1:Mechanical Vibration and Shock-Evaluation of Human Exposureto Whole-Body Vibration-Part 1: General Requirements. Switzerland, 1997(D).
    [23]路面摩擦系数, URL: https://wenku.baidu.com/view/584eb614a216147917112873.html

    無法下載圖示 電子全文延後公開
    2026/02/24
    QR CODE