簡易檢索 / 詳目顯示

研究生: 王建鑫
Wang, Chien-Hsin
論文名稱: 直接生長大面積石墨烯作為深紫外光發光二極體之透明電流擴散層
Directly Growth Large-Scale Graphene Transparent Conductive Electrodes for UVC LED
指導教授: 胡淑芬
Hu, Shu-Fen
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 74
中文關鍵詞: 電漿輔助式化學氣相沉積直接成長石墨烯氧化鎳深紫外光發光二極體
英文關鍵詞: PECVD, directly growth, graphene, NiO, UVCLED
DOI URL: http://doi.org/10.6345/THE.NTNU.DP.014.2018.B04
論文種類: 學術論文
相關次數: 點閱:161下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯(graphene)由碳原子與相鄰碳原子以共價鍵sp2軌域混成,排列呈六角形蜂巢結構之二維材料,其具有高載子遷移率、高光穿透率、低電阻率與高熱導性等優點,而最為顯著之優勢為於紫外光波段具有高穿透度,故本研究發展石墨烯應用於發深紫外光之發光二極體(UVCLED)作為透明電流擴散層(TCE)。然而發展石墨烯作為透明電流擴散層其關鍵需克服與深紫外光發光二極體表層材料之接觸問題。 本論文提出藉由原子層化學氣相沈積(ALD)進行沉積氧化鎳作為緩衝層以降低蕭特基能障,並改善接觸電阻不佳問題。而在本論文中致力於發展直接生長之大面積石墨烯,研究使用電漿輔助式化學氣相沉積(PECVD),藉由鎳薄膜作為金屬催化劑直接成長石墨烯於目標基板,省去傳統石墨烯應用之轉印步驟,以利量產之可行性,同時也使得製程溫度降低以符合深紫外光發光二極體晶片之熱積存(thermal budget)。最後於深紫外光發光二極體之p型氮化鎵上完成氧化鎳緩衝層之沉積與約為四層直接生長之石墨烯,並測得其接觸電阻值ρc = (2.29 ± 0.73) × 10-1 Ω-cm2,且石墨烯/氧化鎳於280 nm深紫外光穿透度仍具有62.1%,得此為一具潛力以取代銦錫氧化物(ITO)作為深紫外光發光二極體之電流擴散層材料。

    Graphene is arranged from the carbon atoms and the adjacent carbon atom with a covalent bond, forming sp2 hybridization. It is a two-dimensional material which arranges in a hexagonal honeycomb structure. Graphene has advantages such as high carrier mobility, high transmittance, low resistivity and good thermal properties, among those advantages the high transmittance in UV region is the most significant characteristic, so we applied the graphene on UVCLED as transparent conductivity electrode. However, the key of applying the graphene on UVCLED is the contact problem between the graphene and the surface material of UVCLED.
    In the thesis, we proposed using atomic layer chemical vapor deposition to deposit nickel oxide as the buffer layer decreasing the Schottky barrier height, which also improved the poor contact. We also dedicated to directly growing large-scale graphene by plasma-enhanced chemical vapor deposition(PECVD). Using nickel film as a metal catalyst, we directly grew graphene on the substrate. Obviously, we could apply the graphene without transferring process. It makes large area production of graphene be feasible, at the same time it decreases the process temperature to confirm the thermal budget. Finally, we deposited nickel oxide and directly grew about four layers of graphene on the p-GaN, then measuring the contact resistance is (2.29 ± 0.73) × 10-1Ω-cm2. The transmittance of graphene with nickel oxide is 62.1%. It shows graphene is the potential material to replace indium tin oxide as a transparent conductive electrode of UVCLED.

    致謝 I 摘要 II 第一章 緒論 1 1.1 研究動機 1 1.2 石墨烯發展歷程 3 1.3 石墨烯基本特性 4 1.3.1 石墨烯晶格與能帶結構 4 1.3.2 石墨烯光學性質 6 1.3.3 石墨烯熱傳導性質 7 1.3.4 石墨烯機械特性 8 1.4 石墨烯之製備方法 8 1.4.1 機械剝離法 (Mechanical exfoliation) 10 1.4.2 氧化石墨烯還原法 (Reduction of graphene oxide) 11 1.4.3 液相剝離法 (Liquid phase exfoliation) 12 1.4.4 碳化矽生長法 (Epitaxial growth on SiC) 12 1.4.5 切割奈米碳管法 (Carbon nanotube unzipping) 14 1.4.6 化學氣相沉積法 (Chemical Vapor Deposition;CVD) 15 1.5 發光二極體(Light Emitting Diode;LED) 17 1.5.1 發光二極體發展歷史 18 1.5.2 發光二極體發光原理 18 1.5.3 藍光發光二極體 19 1.5.4 紫外光發光二極體 21 1.6 石墨烯應用於深紫外光發光二極體 22 1.6.1 電流擴散層材料之分析 23 1.6.2 電流擴散層材料之歐姆接觸 24 1.7 文獻回顧 27 第二章 實驗樣品製備流程與儀器介紹 37 2.1 電漿輔助式化學氣相沉積之石墨烯製程儀器與參數 37 2.1.1 電漿輔助式化學氣相沉積之石墨烯製程儀器介紹 38 2.1.2 電漿輔助式化學氣相沉積之石墨烯製程參數 44 2.2 石墨烯/氧化鎳透明電流擴散層 46 2.2.1 原子層化學氣相沉積之氧化鎳 47 2.2.2 石墨烯/氧化鎳/UVCLED 接觸電性量測片之結構與製程 49 2.3 電子束蒸鍍系統沉積鎳薄膜 50 2.4 量測儀器介紹 51 2.4.1 拉曼光譜儀 51 2.4.2 四點探針 53 2.4.3 圓形傳輸線模型 (Circular Transmission Line Model;CTLM) 54 2.4.4 分光光度儀 55 2.4.5 穿透式電子顯微鏡 (Transmission Electeon Microscopy;TEM) 55 2.4.6 能量色散X-射線光譜 (Energy-Dispersive X-ray Spectroscopy;EDS) 56 第三章 實驗結果與討論 57 3.1 電漿輔助式化學氣相沉積直接生長石墨烯 57 3.1.1 直接生長石墨烯之特性量測與分析 57 3.1.2 夾層石墨烯之驗證 63 3.2 氧化鎳緩衝層之效應 66 3.3 直接成長石墨烯與晶片之接觸電性量測 67 第四章 結論 71

    [1] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars, L. A. Coldren, “Indium tin oxide contacts to gallium nitride optoelectronic devices”, Applied Physics Letters 74 (26), 0003-6951 (1999)
    [2] F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, “Graphene photonics and optoelectronics”, Nature Photonics 4, 611 - 622 (2010)
    [3] D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh & A. A. Sokol, “Band alignment of rutile and anatase TiO2”, Nature Materials 12, 798–801 (2013)
    [4] Y.J. Yu,Y. Zhao, S. Ryu,L.E. Brus, K.S. Kim, P. Kim, “Tuning the Graphene Work Function by Electric Field Effect”, Nano Letters,Vol. 9, No. 10,3430-3434 (2009)
    [5] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science 306 (5696), 666-669 (2004)
    [6] Eva Y Andrei, Guohong Li, Xu Du, “Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport”, Reports On Progress In Physics 75 (2012)
    [7] M.O. Goerbig,J.N. Fuchs,G. Montambaux,F. Pi´echon, “Massless Dirac fermions in the quasi-2D organic material α-(BEDT-TTF)2I3 under pressure”, [Online]. Available: https://www.equipes.lps.u-psud.fr/GOERBIG/Utrecht0809.pdf
    [8] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene”, Science 320 (5881), 1308-1308 (2008)
    [9] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, “Superior Thermal Conductivity of Single-Layer Graphene”, Nano Letters 8 (3), 902-907 (2008)
    [10] C. Lee, X. Wei, J. W. Kysar, J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene”, Science 321 (5887), 385-388 (2008)
    [11] K. Samba Sivudu, Yashwant Mahajan, “Mass Production of High Quality Graphene: An Analysis of Worldwide Patents”, Nanotech Insights (2012), available : http://www.nanowerk.com/spotlight/
    spotid=25744.php#ixzz1zDLJKv1i
    [12] V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker , S. Seal, “Graphene based materials: Past, present and future” ,Progress in Materials Science,56, 1178–1271(2011)
    [13] www.xincailiao.com/news/news_detail.aspx?id=17515
    [14] http://www.graphene.ar.rs/lpe.html
    [15] C. Berger, Z. Song, X. Li, X. Wu,N. Brown, C. Naud, D. Mayou, T. Li,J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. Heer, “Electronic confinement and coherence in patterned epitaxial graphene” , Science ,312 (5777), 1191-1196 (2006)
    [16] W. Norimatsu, M. Kusunoki, Formation process of graphene on SiC (0001), "Low-dimensional Systems and Nanostructures", Physica E, 42 (4), 691–694 (2010).
    [17] X. Jia,J. Campos-Delgado, M. Terrones, V. Meuniere , M.S. Dresselhaus, “Graphene edges: a review of their fabrication and characterization”, nanoscale, 3, 86(2011)
    [18] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, “Graphene segregated on Ni surfaces and transferred to insulators”, Appl. Phys. Lett. 93, 113103 (2008)
    [19] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils”, Science 324 (5932), 1312-1314 (2009)
    [20] http://www.superbrightleds.com/moreinfo/through-hole/5mm-uv-led-30-degree-viewing-angle-400-nm-40mw/630/
    [21] https://en.wikipedia.org/wiki/Light-emitting_diode
    [22] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, J. M. Tsai, “400-nm InGaN–GaN and InGaN–AlGaN Multiquantum Well Light-Emitting Diodes”, IEEE Journal of Selected Topics in Quantum Electronics 8 (4), 1077-260X (2002)
    [23] http://www.golsen.jp/en/ultraviolet/kindofu.html
    [24] R. H. Horng, B. R. Wu, C. H. Tien, S. L. Ou, M. H. Yang, H. C. Kuo, and D. S. Wuu, “ Performance of GaN-based light-emitting diodes fabricated using GaN epilayers grown on silicon substrate”, Optic Express 22 (1), A179-A187 (2014)
    [25] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, S.S. Pei1, “Graphene segregated on Ni surfaces and transferred to insulators” , APPLIED PHYSICS LETTERS ,93, 113103 (2008)
    [26] T. Kato, R. Hatakeyama, “Direct Growth of Doping-Density Controlled Hexagonal Graphene on SiO2 Substrate by Rapid-Heating Plasma CVD” , ACS Nano, 6 (10), pp 8508–8515(2012)
    [27] Liangchao Guo, Zhenyu Zhang, Hongyan Sun, Dan Dai, Junfeng Cui, Mingzheng Li, Yang Xu, Mingsheng Xu, Yuefeng Du, Nan Jiang, Feng Huang, Cheng-Te Lin, “Direct formation of wafer-scale single-layer graphene films on the rough surface substrate by PECVD” , Carbon , 129, 456−461 (2018)
    [28] B. J. Kim, M. A. Mastro, J. Hite, C. R. Eddy, Jr.2 , J. Kim1, “Transparent conductive graphene electrode in GaN-based ultra-violet light emitting diodes”, Optics Express 18 (22), 23030-23034 (2010)
    [29] S. Chandramohan, J.H. Kang, B.D. Ryu, J.H. Yang, S. Kim, H. Kim, J.B. Park, T.Y. Kim, B.J. Cho, E.K. Suh, C.H. Hong, “Impact of Interlayer Processing Conditions on the Performance of GaN Light-Emitting Diode with Specific NiOx/Graphene Electrode”, Solid-State Electronics ,109 ,47–51 (2015)
    [30] http://www.dahyoung.com/thinktank_article.php?id=30
    [31] http://web.it.nctu.edu.tw/~FMPANLAB/ALD.htm
    [32] 莫定山(2007), “Raman 光譜原理及應用” , available : http:// labguide.com.tw/user/w016267551/uploads/1246937317.pdf
    [33] http://bwtek.com/raman-theory-of-raman-scattering/
    [34] http://cnx.org/contents/8GImxcKk@2/Characterization-of-Graphene-b
    [35] http://eshare.stust.edu.tw/EshareFile/2016_12/2016_12_297db8f5.pdf
    [36] http://highscope.ch.ntu.edu.tw/wordpress/?p=1599
    [37] http://www.eaglabs.com.tw/eds.html

    無法下載圖示 本全文未授權公開
    QR CODE