簡易檢索 / 詳目顯示

研究生: 李奇軒
Lee, Chi-Shiuan
論文名稱: 髖膝外骨骼機器人輔助人體站立平衡之控制
Assistance of a Hip-Knee Exoskeleton Robot for Control of Standing Balance
指導教授: 陳俊達
Chen, Chun-Ta
口試委員: 林志哲
Lin, Chih-Jer
陳金聖
Chen, Chin-Sheng
陳俊達
Chen, Chun-Ta
口試日期: 2023/01/11
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 84
中文關鍵詞: 穿戴式外骨骼機器人站立平衡輔助模糊滑模控制
英文關鍵詞: Wearable exoskeleton robot, Standing balance assistance, Fuzzy sliding mode control
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300217
論文種類: 學術論文
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在設計一髖膝外骨骼在人體受到外力碰撞時能輔助人體維持站立平衡。文中探討了髖膝外骨骼的設計及應用,主要提供還有行動能力之穿戴者平衡的輔助,研究中使用足底壓力感測器測量人體的足底壓力中心(Center of Pressure, COP),以此為判斷是否穩定的依據,下肢各部位的感測器及編碼器則用來計算人體重心(Center of Gravity, COG)位置,藉由參考零力矩點(Zero Moment Point, ZMP)計算維持平衡之髖關節參考角度。文中設計模糊PD控制及模糊滑模控制以使人體回復到平衡位置,並針對個別的輔助效果進行討論,結果顯示髖膝外骨骼機器人能在正常人與輕度巴金森氏症病患的實驗中有效地協助其受到外力干擾後的平衡回復。

    The purpose of this thesis is to design a hip-knee exoskeleton that can assist the human body in maintaining standing balance when subjected to external forces. The design and application of the hip-knee exoskeleton are discussed, with the main focus being on providing balance assistance to the wearer with mobility. In the study, a plantar pressure sensor is used to measure the center of pressure (COP) of the human body, which is used as a basis for determining stability. Sensors and encoders in the lower limbs are used to calculate the location of the center of gravity (COG) of the body, and the reference angle of the hip joint is calculated using the zero moment point (ZMP). The design of fuzzy PD control and fuzzy sliding mode control aims to restore the human body to a balanced position, and the individual assistance effects are discussed. The results show that the hip-knee exoskeleton robot can effectively assist the balance of healthy individuals and mild Parkinson's disease patients after being subjected to external disturbance.

    第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 4 1.3 文獻回顧 5 1.4 論文架構 13 第二章 髖-膝外骨骼機器人硬體與電路設計 14 2.1 設計總覽 14 2.2 機構設計與馬達、編碼器及相關設備之選用 16 2.2.1 髖關節之設計 16 2.2.2 膝關節之設計 16 2.2.3 踝關節之設計 17 2.2.4 感測器及相關設備 20 2.3 控制板與電路設計 23 第三章 站立平衡與穩定 27 3.1 平衡相關定義 27 3.1.1 零力矩點(Zero Moment Point) 27 3.1.2 壓力中心 (Center of Pressure) 29 3.1.3 質心與重心 (Center of Mass and Center of Gravity) 30 3.2 站立平衡簡化模型 32 3.2.1 倒單擺模型與線性倒單擺模型 32 3.2.2 飛輪式線性倒單擺模型 33 3.2.3 雙質點倒單擺模型 34 3.3 平衡策略 35 3.4 控制器設計 39 3.4.1 基於模糊之PD增益參數控制 (Fuzzy-PD Control) 39 3.4.2 模糊滑模控制 (Fuzzy Sliding Mode Control) 45 3.5 站立平衡輔助控制 53 第四章 實驗結果與分析 54 4.1 髖關節策略平衡實驗 54 4.2 正常受試者實驗結果 55 4.2.1 不同控制法之輔助實驗 55 4.2.2 不同安全區域之輔助實驗 58 4.2.3 不同外力之輔助實驗 63 4.3 巴金森氏症病患實驗 68 第五章 結論與未來工作 81 參考文獻 82

    [1] 國家發展委員會人口推估查詢系統。檢自https://popproj.ndc.gov.tw/dataSearch.aspx?uid=59&pid=59
    [2] Vikash Kumar, et al. “Review of Exoskeleton : History, Design and Control.” 3rd International Conference on Recent Developments in Control, Automation & Power Engineering, pp.677-682, Oct. 2019
    [3] Adam B. Zoss, et al. “Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX)” IEEE/ASME Transactions on mechatronics 11.2 pp.128-138, 2006
    [4] Dong Jin Hyun, et al. “Biomechanical design of an agile, electricity-powered lower-limb exoskeleton for weight-bearing assistance” Robotics and Autonomous Systems 95, pp.181-195, 2017
    [5] Sankai, Yoshiyuki. “HAL: Hybrid assistive limb based on cybernics.” Robotics research. Springer, Berlin, Heidelberg, pp.25-34, 2010
    [6] Bergen G, Stevens MR, Burns ER. “Falls and Fall Injuries Among Adults Aged ≥65 Years — United States, 2014”. Morbidity Mortality Weekly Report 2016 ; 65: pp.993–998. 檢自 http://dx.doi.org/10.15585/mmwr.mm6537a2
    [7] Wei Yu, et al. “Effects of Joint Torque Constraints on Humanoid Robot Balance Recovery in the Presence of External Disturbance” International Conference on Robotics and Biomimetics, Dec. 2009
    [8] Tomomichi Sugihara, Yoshihiko Nakamura, Hirochika Inoue. “Realtime Humanoid Motion Generat ion through ZMP Manipulation based on Inverted Pendulum Control” International Conference on Robotics & Automation, Washington, D.C., May 2002
    [9] Dragomir N. Nenchev, Akinori Nishio. “Ankle and hip strategies for balance recovery of a biped subjected to an impact” Robotica, volume 26, pp. 643–653, 2008
    [10] Yoshikazu Kanamiya, Shun Ota and Daisuke Sato. “Ankle and Hip Balance Control Strategies with Transitions” IEEE International Conference on Robotics and Automation, pp. 3446-3451, Anchorage, Alaska, USA, May 2010
    [11] R. Beranek, H. Fung and M. Ahmadi. “A Walking Stability Controller with Disturbance Rejection Based on CMP Criterion and Ground Reaction Force Feedback” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2261-2266, San Francisco, CA, USA, Sep. 2011
    [12] Eric C. Whitman, Benjamin J. Stephens, and Christopher G. Atkeson. “Torso Rotation for Push Recovery Using A Simple Change of Variables” 12th IEEE-RAS International Conference on Humanoid Robots, pp.50-56, Business Innovation Center Osaka, Japan, Dec. 2012
    [13] Ren C. Luo, Jun Sheng, Chin-Cheng Chen, Peng-Hsi Chang, and Che-I Lin. “Biped Robot Push and Recovery Using Flywheel Model Based Walking Perturbation Counteraction.” pp.50-55, Atlanta, GA, Oct. 2013
    [14] Saurav Singh, “Push Recovery for Humanoid Robots using Linearized Double Inverted Pendulum”, Rochester Institute of Technology, Jun.2020
    [15] Amber Emmens, et al. “Improving the Standing Balance of Paraplegics through the use of a Wearable Exoskeleton”, 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics, pp.707-712, Enschede, The Netherlands, Aug. 2018
    [16] M. Vukobratovic and D. Juricic. “Contribution to the synthesis of biped gait” Proc. IFAC Symp. Technical and Biological Problem on Control, Erevan, USSR, 1968.
    [17] Charles E. Clauser, et al. “Weight, volume and center of mass of segments of the human body.” AMRL Tech Rep 60–70, 1969
    [18] Shuuji Kajita. “Humanoid Robotics: A Reference” pp.1-18, Aug. 2017
    [19] Jerry Pratt, John Carff, Sergey Drakunov, Ambarish Goswami“Capture Point: A Step toward Humanoid Push Recovery” 2006 6th IEEE-RAS International Conference on Humanoid Robots, pp. 200-207, 2006.
    [20] Benjamin Stephens. “Integral Control of Humanoid Balance” 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4020-4027, 2007
    [21] L. A. Zadeh “Fuzzy Sets.” Information and Control Vol.8, pp.338-353, June. 1965
    [22] Jing Hua, Li-Xia An, Yi-Min Li. “Bionic fuzzy sliding mode control and robustness analysis.” Applied Mathematical Modeling 39, pp.4482-4493, 2015

    無法下載圖示 電子全文延後公開
    2025/02/28
    QR CODE