研究生: |
張嘉珍 Chang, Chia-Chen |
---|---|
論文名稱: |
綠茶萃取物補充對運動表現與後續恢復期能量代謝的影響 The effects of acute oral GTE supplementation on exercise performance and energy metabolism during subsequent recovery periods in humans |
指導教授: |
程一雄
Cheng, I-Shiung 徐孟達 Hsu, Mong-Da |
學位類別: |
博士 Doctor |
系所名稱: |
體育學系 Department of Physical Education |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | 力竭性運動 、疲勞 、能量消耗 、脂肪氧化作用 |
英文關鍵詞: | exhaustive exercise, fatigue, energy expenditure, fat oxidation |
DOI URL: | http://doi.org/10.6345/DIS.NTNU.DPE.006.2018.F03 |
論文種類: | 學術論文 |
相關次數: | 點閱:196 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討運動前單次補充去咖啡因綠茶萃取物 (green tea extracts, GTE) 是否能提升力竭性運動表現,以及於運動結束後立即再次補充GTE對後續恢復期間身體能量代謝的影響。本實驗採用單盲交叉設計,招募11位健康男性受試者重複進行綠茶試驗 (GTE) 與安慰組試驗 (Placebo),兩次試驗至少間隔7天以上。受試者在試驗當天早上食用1份300大卡的輕食,隨後,立即補充1500 mg GTE或安慰劑膠囊,安靜休息2小時後,在原地腳踏車上進行單次固定強度 ( 60%最大功率) 至力竭的運動,運動後隨即再補充1500 mg 相同成份的膠囊。運動期間全程監控心率變化;補充前、運動前、後採集手臂靜脈血液,以及運動結束後3小時期間,每60分鐘採血;運動後3小時期間,每60分鐘收集氣體變化。除了運動至力竭的時間與總能量消耗以配對 t 檢定外,所有參數皆以重複量數二因子 (試驗×時間) 變異數進行分析,若交互作用達顯著差異,以 Bonferroni 法進行事後比較。本研究結果 (1) 運動前單次GTE補充明顯提升運動至力竭的時間 (p < .05);(2) 血清非酯化脂肪酸濃度和氣體呼吸交換率數據顯示,力竭運動後立即補充GTE,恢復期間身體能量傾向脂肪氧化作用。另外,GTE 的血氨在運動結束時顯著高於 Placebo,而運動恢復期間第180分鐘明顯低於 Placebo (p < .05)。GTE 和 Placebo 的血糖、血清尿素與血清肌酸激酶、總能量消耗皆未達顯著差異。本研究結論 (1) 運動前補充 GTE 可以提升力竭運動表現;(2) 運動後立即再次補充 GTE 使身體能量代謝傾向於脂肪氧化作用。
The purpose of the study was to investigate whether single-dose administration of green tea extracts (GTE) would enhance subsequent exercise performance, and the effect of second GTE supplementation immediately after exercise on substrate oxidation during exercise recovery periods. Eleven recruited healthy male performed a cycling exercise at 60%Wmax until exhaustion follow either 1500 mg GTE or placebo capsule with a 300 kcal breakfast meal, then second GTE /placebo administration immediately after exhausting exercise under a single- blinded cross-over design. Heart rate data, blood and gaseous exchange samples were collected during experimental period. Student’s paired t-test was performed to compare the differences of the exercise time to exhaustion at 60%Wmax and total energy expenditure. Other variables were assessed using repeated measures (trial × time) analysis of variance with Bonferroni post hoc test. The main results in this study showed (1) acute GTE supplementation enhanced exhausting time in ergometer cycling test (p < .05); (2) second GTE administration immediately after exhausting exercise will affect energy metabolism reliance on fat oxidation, based on gaseous exchange sample and serum non-esterified fatty acid concentration. In addition, serum ammonia level was significantly higher immediately after exercise in GTE trial (p < .05). However, GTE significantly lowered serum ammonia concentration at 180 min during recovery period. Blood glucose, serum urea and creatine kinase, and total energy expenditure were unchanged between GTE/placebo trials. Therefore, we suggest that (1) GTE enhances exhausting exercise performance; (2) post-exercise GTE administration increases energy reliance on fat oxidation.
Achten, J., Gleeson, M., & Jeukendrup, A. E. (2002). Determination of the exercise intensity that elicits maximal fat oxidation. Medicine and Science in Sports and Exercise, 34(1), 92-97.
Achten, J., & Jeukendrup, A. E. (2003). Maximal fat oxidation during exercise in trained men. Int J Sports Med, 24(8), 603-608. doi:10.1055/s-2003-43265
Arkinstall, M. J., Bruce, C. R., Clark, S. A., Rickards, C. A., Burke, L. M., & Hawley, J. A. (2004). Regulation of fuel metabolism by preexercise muscle glycogen content and exercise intensity. Journal of Applied Physiology (1985), 97(6), 2275-2283. doi:10.1152/japplphysiol.00421.2004
Baar, K. (2014). Nutrition and the adaptation to endurance training. Sports Medicine, 44 Suppl 1, S5-12. doi:10.1007/s40279-014-0146-1
Baird, M. F., Graham, S. M., Baker, J. S., & Bickerstaff, G. F. (2012). Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. J Nutr Metab, 2012, 960363. doi:10.1155/2012/960363
Bansal, S., Choudhary, S., Sharma, M., Kumar, S. S., Lohan, S., Bhardwaj, V., . . . Jyoti, S. (2013). Tea: A native source of antimicrobial agents. Food Research International, 53(2), 568-584. doi:10.1016/j.foodres.2013.01.032
Berube-Parent, S., Pelletier, C., Dore, J., & Tremblay, A. (2005). Effects of encapsulated green tea and Guarana extracts containing a mixture of epigallocatechin-3-gallate and caffeine on 24 h energy expenditure and fat oxidation in men. British Journal of Nutrition, 94(3), 432-436.
Bird, S. R., & Hawley, J. A. (2016). Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport and Exercise Medicine, 2(1), e000143. doi:10.1136/bmjsem-2016-000143
Bloomer, R. J., & Goldfarb, A. H. (2004). Anaerobic exercise and oxidative stress: a review. Can J Appl Physiol, 29(3), 245-263.
Bolger, A. P., Sharma, R., von Haehling, S., Doehner, W., Oliver, B., Rauchhaus, M., . . . Anker, S. D. (2002). Effect of interleukin-10 on the production of tumor necrosis factor-alpha by peripheral blood mononuclear cells from patients with chronic heart failure. Am J Cardiol, 90(4), 384-389.
Chow, H. H., Hakim, I. A., Vining, D. R., Crowell, J. A., Ranger-Moore, J., Chew, W. M., . . . Alberts, D. S. (2005). Effects of dosing condition on the oral bioavailability of green tea catechins after single-dose administration of Polyphenon E in healthy individuals. Clinical Cancer Research, 11(12), 4627-4633. doi:10.1158/1078-0432.CCR-04-2549
Coggan, A. R. (1991). Plasma glucose metabolism during exercise in humans. Sports Medicine, 11(2), 102-124.
Coyle, E. F., Coggan, A. R., Hemmert, M. K., Lowe, R. C., & Walters, T. J. (1985). Substrate usage during prolonged exercise following a preexercise meal. Journal of Applied Physiology (1985), 59(2), 429-433. doi:10.1152/jappl.1985.59.2.429
Davis, J. M., & Bailey, S. P. (1997). Possible mechanisms of central nervous system fatigue during exercise. Med Sci Sports Exerc, 29(1), 45-57.
Dean, S., Braakhuis, A., & Paton, C. (2009). The effects of EGCG on fat oxidation and endurance performance in male cyclists. International Journal of Sport Nutrition and Exercise Metabolism, 19(6), 624-644.
Dulloo, A. G., Duret, C., Rohrer, D., Girardier, L., Mensi, N., Fathi, M., . . . Vandermander, J. (1999). Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. The American Journal of Clinical Nutrition, 70(6), 1040-1045.
Dulloo, A. G., Geissler, C. A., Horton, T., Collins, A., & Miller, D. S. (1989). Normal caffeine consumption: influence on thermogenesis and daily energy expenditure in lean and postobese human volunteers. The American Journal of Clinical Nutrition, 49(1), 44-50.
Dulloo, A. G., Seydoux, J., Girardier, L., Chantre, P., & Vandermander, J. (2000). Green tea and thermogenesis: interactions between catechin-polyphenols, caffeine and sympathetic activity. International Journal of obesity and Related Metabolic Disorders, 24(2), 252-258.
Eichenberger, P., Colombani, P. C., & Mettler, S. (2009). Effects of 3-week consumption of green tea extracts on whole-body metabolism during cycling exercise in endurance-trained men. International Journal for Vitamin and Nutrition Research, 79(1), 24-33. doi:10.1024/0300-9831.79.1.24
Eichenberger, P., Mettler, S., Arnold, M., & Colombani, P. C. (2010). No effects of three-week consumption of a green tea extract on time trial performance in endurance-trained men. International Journal for Vitamin and Nutrition Research, 80(1), 54-64. doi:10.1024/0300-9831/a000006
Enoka, R. M., & Duchateau, J. (2016). Translating Fatigue to Human Performance. Medicine and Science in Sports and Exercise, 48(11), 2228-2238. doi:10.1249/MSS.0000000000000929
Fares, E. J., & Kayser, B. (2011). Carbohydrate mouth rinse effects on exercise capacity in pre- and postprandial States. Journal of Nutrition and Metabolism, 2011, 385962. doi:10.1155/2011/385962
Feng, Q., Kumagai, T., Torii, Y., Nakamura, Y., Osawa, T., & Uchida, K. (2001). Anticarcinogenic antioxidants as inhibitors against intracellular oxidative stress. Free Radical Research, 35(6), 779-788.
Finsterer, J. (2012). Biomarkers of peripheral muscle fatigue during exercise. BMC Musculoskeletal Disorders 13, 218. doi:10.1186/1471-2474-13-218
Finsterer, J., & Mahjoub, S. Z. (2014). Fatigue in healthy and diseased individuals. American Journal of Hospice and Palliative Medicin, 31(5), 562-575. doi:10.1177/1049909113494748
Frank, J., George, T. W., Lodge, J. K., Rodriguez-Mateos, A. M., Spencer, J. P., Minihane, A. M., & Rimbach, G. (2009). Daily consumption of an aqueous green tea extract supplement does not impair liver function or alter cardiovascular disease risk biomarkers in healthy men. Journal of Nutrition, 139(1), 58-62. doi:10.3945/jn.108.096412
Frayn, K. N. (1983). Calculation of substrate oxidation rates in vivo from gaseous exchange. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 55(2), 628-634.
Fu, X., Ji, R., & Dam, J. (2010). Antifatigue effect of coenzyme Q10 in mice. Journal of Medicinal Food, 13(1), 211-215. doi:10.1089/jmf.2009.0049
Fulle, S., Mecocci, P., Fano, G., Vecchiet, I., Vecchini, A., Racciotti, D., . . . Beal, M. F. (2000). Specific oxidative alterations in vastus lateralis muscle of patients with the diagnosis of chronic fatigue syndrome. Free Radical Biology and Medicine, 29(12), 1252-1259.
Gahreman, D., Wang, R., Boutcher, Y., & Boutcher, S. (2015). Green Tea, Intermittent Sprinting Exercise, and Fat Oxidation. Nutrients, 7(7), 5646-5663. doi:10.3390/nu7075245
Gahreman, D. E., Boutcher, Y. N., Bustamante, S., & Boutcher, S. H. (2016). The combined effect of green tea and acute interval sprinting exercise on fat oxidation of trained and untrained males. Journal of Exercise Nutrition and Biochemistry, 20(1), 1-8.
Gilman, M. B. (1996). The use of heart rate to monitor the intensity of endurance training. Sports Med, 21(2), 73-79.
Gregersen, N. T., Bitz, C., Krog-Mikkelsen, I., Hels, O., Kovacs, E. M., Rycroft, J. A., . . . Astrup, A. (2009). Effect of moderate intakes of different tea catechins and caffeine on acute measures of energy metabolism under sedentary conditions. British Journal of Nutrition, 102(8), 1187-1194. doi:10.1017/S0007114509371779
Haramizu, S., Ota, N., Hase, T., & Murase, T. (2013). Catechins suppress muscle inflammation and hasten performance recovery after exercise. Medicine and Science in Sports and Exercise, 45(9), 1694-1702. doi:10.1249/MSS.0b013e31828de99f
Hargreaves, M. (2015). Exercise, muscle, and CHO metabolism. Scand J Med Sci Sports, 25 Suppl 4, 29-33. doi:10.1111/sms.12607
Hawley, J. A., Burke, L. M., Phillips, S. M., & Spriet, L. L. (2011). Nutritional modulation of training-induced skeletal muscle adaptations. Journal of Applied Physiology (1985), 110(3), 834-845. doi:10.1152/japplphysiol.00949.2010
Hayat, K., Iqbal, H., Malik, U., Bilal, U., & Mushtaq, S. (2015). Tea and its consumption: benefits and risks. Critical Reviews in Food Science and Nutrition, 55(7), 939-954. doi:10.1080/10408398.2012.678949
Hecksteden, A., Skorski, S., Schwindling, S., Hammes, D., Pfeiffer, M., Kellmann, M., . . . Meyer, T. (2016). Blood-Borne Markers of Fatigue in Competitive Athletes - Results from Simulated Training Camps. PLoS One, 11(2), e0148810. doi:10.1371/journal.pone.0148810
Hermansen, L., Hultman, E., & Saltin, B. (1967). Muscle glycogen during prolonged severe exercise. Acta Physiol Scand, 71(2), 129-139. doi:10.1111/j.1748-1716.1967.tb03719.x
Hill, A. M., Coates, A. M., Buckley, J. D., Ross, R., Thielecke, F., & Howe, P. R. (2007). Can EGCG reduce abdominal fat in obese subjects? J Am Coll Nutr, 26(4), 396S-402S.
Hodgson, A. B., Randell, R. K., Boon, N., Garczarek, U., Mela, D. J., Jeukendrup, A. E., & Jacobs, D. M. (2013). Metabolic response to green tea extract during rest and moderate-intensity exercise. The Journal of Nutritional Biochemistry, 24(1), 325-334. doi:10.1016/j.jnutbio.2012.06.017
Hodgson, A. B., Randell, R. K., & Jeukendrup, A. E. (2013). The effect of green tea extract on fat oxidation at rest and during exercise: evidence of efficacy and proposed mechanisms. Adv Nutr, 4(2), 129-140. doi:10.3945/an.112.003269
Ichinose, T., Nomura, S., Someya, Y., Akimoto, S., Tachiyashiki, K., & Imaizumi, K. (2011). Effect of endurance training supplemented with green tea extract on substrate metabolism during exercise in humans. Scand J Med Sci Sports, 21(4), 598-605. doi:10.1111/j.1600-0838.2009.01077.x
Jeukendrup, A. E., & Randell, R. (2011). Fat burners: nutrition supplements that increase fat metabolism. Obesity Reviews, 12(10), 841-851. doi:10.1111/j.1467-789X.2011.00908.x
Jowko, E., Dlugolecka, B., Makaruk, B., & Cieslinski, I. (2015). The effect of green tea extract supplementation on exercise-induced oxidative stress parameters in male sprinters. European Journal of Nutrition, 54(5), 783-791. doi:10.1007/s00394-014-0757-1
Jowko, E., Sacharuk, J., Balasinska, B., Wilczak, J., Charmas, M., Ostaszewski, P., & Charmas, R. (2012). Effect of a single dose of green tea polyphenols on the blood markers of exercise-induced oxidative stress in soccer players. International Journal of Sport Nutrition and Exercise Metabolism, 22(6), 486-496.
Khan, N., & Mukhtar, H. (2007). Tea polyphenols for health promotion. Life Science, 81(7), 519-533. doi:10.1016/j.lfs.2007.06.011
Kimber, N. E., Heigenhauser, G. J., Spriet, L. L., & Dyck, D. J. (2003). Skeletal muscle fat and carbohydrate metabolism during recovery from glycogen-depleting exercise in humans. J Physiol, 548(Pt 3), 919-927. doi:10.1113/jphysiol.2002.031179
Kluger, B. M., Krupp, L. B., & Enoka, R. M. (2013). Fatigue and fatigability in neurologic illnesses: proposal for a unified taxonomy. Neurology, 80(4), 409-416. doi:10.1212/WNL.0b013e31827f07be
Korzeniewski, B. (2006). AMP deamination delays muscle acidification during heavy exercise and hypoxia. J Biol Chem, 281(6), 3057-3066. doi:10.1074/jbc.M510418200
Kuo, Y. C., Lin, J. C., Bernard, J. R., & Liao, Y. H. (2015). Green tea extract supplementation does not hamper endurance-training adaptation but improves antioxidant capacity in sedentary men. Applied Physiology, Nutrition, and Metabolism, 40(10), 990-996. doi:10.1139/apnm-2014-0538
Lee, M. S., Kim, C. T., & Kim, Y. (2009). Green tea (-)-epigallocatechin-3-gallate reduces body weight with regulation of multiple genes expression in adipose tissue of diet-induced obese mice. Ann Nutr Metab, 54(2), 151-157. doi:10.1159/000214834
Leenen, R., Roodenburg, A. J., Tijburg, L. B., & Wiseman, S. A. (2000). A single dose of tea with or without milk increases plasma antioxidant activity in humans. European Journal of Clinical Nutrition, 54(1), 87-92.
Liu, L., Wu, X., Zhang, B., Yang, W., Li, D., Dong, Y., . . . Chen, Q. (2017). Protective effects of tea polyphenols on exhaustive exercise-induced fatigue, inflammation and tissue damage. Food and Nutrition Research, 61(1), 1333390. doi:10.1080/16546628.2017.1333390
Malatesta, D., Vismara, L., Menegoni, F., Galli, M., Romei, M., & Capodaglio, P. (2009). Mechanical external work and recovery at preferred walking speed in obese subjects. Med Sci Sports Exerc, 41(2), 426-434. doi:10.1249/MSS.0b013e31818606e7
Manuel y Keenoy, B., Moorkens, G., Vertommen, J., Noe, M., Neve, J., & De Leeuw, I. (2000). Magnesium status and parameters of the oxidant-antioxidant balance in patients with chronic fatigue: effects of supplementation with magnesium. Journal of the American College of Nutrition, 19(3), 374-382.
Martin, B. J., Tan, R. B., Gillen, J. B., Percival, M. E., & Gibala, M. J. (2014). No effect of short-term green tea extract supplementation on metabolism at rest or during exercise in the fed state. International Journal of Sport Nutrition and Exercise Metabolism, 24(6), 656-664. doi:10.1123/ijsnem.2013-0202
Maughan, R. J., Fallah, J., & Coyle, E. F. (2010). The effects of fasting on metabolism and performance. British Journal of Sports Medicine, 44(7), 490-494. doi:10.1136/bjsm.2010.072181
Murase, T., Haramizu, S., Ota, N., & Hase, T. (2008). Tea catechin ingestion combined with habitual exercise suppresses the aging-associated decline in physical performance in senescence-accelerated mice. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 295(1), R281-289. doi:10.1152/ajpregu.00880.2007
Murase, T., Haramizu, S., Shimotoyodome, A., Nagasawa, A., & Tokimitsu, I. (2005). Green tea extract improves endurance capacity and increases muscle lipid oxidation in mice. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 288(3), R708-715. doi:10.1152/ajpregu.00693.2004
Murase, T., Haramizu, S., Shimotoyodome, A., & Tokimitsu, I. (2006). Reduction of diet-induced obesity by a combination of tea-catechin intake and regular swimming. International Journal of Obesity (Lond), 30(3), 561-568. doi:10.1038/sj.ijo.0803135
Nagao, T., Hase, T., & Tokimitsu, I. (2007). A green tea extract high in catechins reduces body fat and cardiovascular risks in humans. Obesity (Silver Spring), 15(6), 1473-1483. doi:10.1038/oby.2007.176
Nanjo, F., Goto, K., Seto, R., Suzuki, M., Sakai, M., & Hara, Y. (1996). Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Radical Biology and Medicine, 21(6), 895-902.
Nie, G., Cao, Y., & Zhao, B. (2002). Protective effects of green tea polyphenols and their major component, (-)-epigallocatechin-3-gallate (EGCG), on 6-hydroxydopamine-induced apoptosis in PC12 cells. Redox Report, 7(3), 171-177. doi:10.1179/135100002125000424
Rains, T. M., Agarwal, S., & Maki, K. C. (2011). Antiobesity effects of green tea catechins: a mechanistic review. J Nutr Biochem, 22(1), 1-7. doi:10.1016/j.jnutbio.2010.06.006
Randell, R. K., Hodgson, A. B., Lotito, S. B., Jacobs, D. M., Rowson, M., Mela, D. J., & Jeukendrup, A. E. (2014). Variable duration of decaffeinated green tea extract ingestion on exercise metabolism. Medicine and Science in Sports and Exercise, 46(6), 1185-1193. doi:10.1249/MSS.0000000000000205
Richards, J. C., Lonac, M. C., Johnson, T. K., Schweder, M. M., & Bell, C. (2010). Epigallocatechin-3-gallate increases maximal oxygen uptake in adult humans. Medicine and Science in Sports and Exercise, 42(4), 739-744. doi:10.1249/MSS.0b013e3181bcab6c
Romijn, J. A., Coyle, E. F., Sidossis, L. S., Gastaldelli, A., Horowitz, J. F., Endert, E., & Wolfe, R. R. (1993). Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. American Journal of Physiology, 265(3 Pt 1), E380-391.
Rudelle, S., Ferruzzi, M. G., Cristiani, I., Moulin, J., Mace, K., Acheson, K. J., & Tappy, L. (2007). Effect of a thermogenic beverage on 24-hour energy metabolism in humans. Obesity (Silver Spring), 15(2), 349-355. doi:10.1038/oby.2007.529
Sae-Tan, S., Rogers, C. J., & Lambert, J. D. (2015). Decaffeinated Green Tea and Voluntary Exercise Induce Gene Changes Related to Beige Adipocyte Formation in High Fat-Fed Obese Mice. Journal of Functional Foods, 14, 210-214. doi:10.1016/j.jff.2015.01.036
Salam, H., Marcora, S. M., & Hopker, J. G. (2018). The effect of mental fatigue on critical power during cycling exercise. Eur J Appl Physiol, 118(1), 85-92. doi:10.1007/s00421-017-3747-1
Sarma, D. N., Barrett, M. L., Chavez, M. L., Gardiner, P., Ko, R., Mahady, G. B., . . . Low Dog, T. (2008). Safety of green tea extracts : a systematic review by the US Pharmacopeia. Drug Safety, 31(6), 469-484.
Singal, A., Kaur, S., Tirkey, N., & Chopra, K. (2005). Green tea extract and catechin ameliorate chronic fatigue-induced oxidative stress in mice. Journal of Medicinal Food, 8(1), 47-52. doi:10.1089/jmf.2005.8.47
Sugita, M., Kapoor, M. P., Nishimura, A., & Okubo, T. (2016). Influence of green tea catechins on oxidative stress metabolites at rest and during exercise in healthy humans. Nutrition, 32(3), 321-331. doi:10.1016/j.nut.2015.09.005
Sung, H., Nah, J., Chun, S., Park, H., Yang, S. E., & Min, W. K. (2000). In vivo antioxidant effect of green tea. European Journal of Clinical Nutrition, 54(7), 527-529.
Tanaka, M., Baba, Y., Kataoka, Y., Kinbara, N., Sagesaka, Y. M., Kakuda, T., & Watanabe, Y. (2008). Effects of (-) -epigallocatechin gallate in liver of an animal model of combined (physical and mental) fatigue. Nutrition, 24(6), 599-603. doi:10.1016/j.nut.2008.03.001
Teng, Y. S., & Wu, D. (2017). Anti-Fatigue Effect of Green Tea Polyphenols (-)-Epigallocatechin-3-Gallate (EGCG). Pharmacognosy Magazine, 13(50), 326-331. doi:10.4103/0973-1296.204546
Thavanesan, N. (2011). The putative effects of green tea on body fat: an evaluation of the evidence and a review of the potential mechanisms. British Journal of Nutrition, 106(9), 1297-1309. doi:10.1017/S0007114511003849
Thielecke, F., Rahn, G., Bohnke, J., Adams, F., Birkenfeld, A. L., Jordan, J., & Boschmann, M. (2010). Epigallocatechin-3-gallate and postprandial fat oxidation in overweight/obese male volunteers: a pilot study. European Journal of Clinical Nutrition, 64(7), 704-713. doi:10.1038/ejcn.2010.47
Tsai, T. W., Chang, C. C., Liao, S. F., Liao, Y. H., Hou, C. W., Tsao, J. P., & Cheng, I. S. (2017). Effect of green tea extract supplementation on glycogen replenishment in exercised human skeletal muscle. British Journal of Nutrition, 117(10), 1343-1350. doi:10.1017/S0007114517001374
Tsuneki, H., Ishizuka, M., Terasawa, M., Wu, J. B., Sasaoka, T., & Kimura, I. (2004). Effect of green tea on blood glucose levels and serum proteomic patterns in diabetic (db/db) mice and on glucose metabolism in healthy humans. BMC Pharmacology and Toxicology, 4, 18. doi:10.1186/1471-2210-4-18
Ullmann, U., Haller, J., Decourt, J. P., Girault, N., Girault, J., Richard-Caudron, A. S., . . . Weber, P. (2003). A single ascending dose study of epigallocatechin gallate in healthy volunteers. Journal of International Medical Research, 31(2), 88-101. doi:10.1177/147323000303100205
Urhausen, A., & Kindermann, W. (2002). Diagnosis of overtraining: what tools do we have? Sports Medicine, 32(2), 95-102.
Venables, M. C., Hulston, C. J., Cox, H. R., & Jeukendrup, A. E. (2008). Green tea extract ingestion, fat oxidation, and glucose tolerance in healthy humans. The American Journal of Clinical Nutrition, 87(3), 778-784.
Wang, H., Wen, Y., Du, Y., Yan, X., Guo, H., Rycroft, J. A., . . . Mela, D. J. (2010). Effects of catechin enriched green tea on body composition. Obesity (Silver Spring), 18(4), 773-779. doi:10.1038/oby.2009.256
Westerterp-Plantenga, M., Diepvens, K., Joosen, A. M., Berube-Parent, S., & Tremblay, A. (2006). Metabolic effects of spices, teas, and caffeine. Physiol Behav, 89(1), 85-91. doi:10.1016/j.physbeh.2006.01.027
Wolfe, R. R., Klein, S., Carraro, F., & Weber, J. M. (1990). Role of triglyceride-fatty acid cycle in controlling fat metabolism in humans during and after exercise. Am J Physiol, 258(2 Pt 1), E382-389. doi:10.1152/ajpendo.1990.258.2.E382
Wolfram, S., Raederstorff, D., Preller, M., Wang, Y., Teixeira, S. R., Riegger, C., & Weber, P. (2006). Epigallocatechin gallate supplementation alleviates diabetes in rodents. Journal of Nutrition, 136(10), 2512-2518.
Yang, C. S., Chen, L., Lee, M. J., Balentine, D., Kuo, M. C., & Schantz, S. P. (1998). Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers. Cancer Epidemiology, Biomarkers and Prevention, 7(4), 351-354.
You, L., Zhao, M., Liu, R. H., & Regenstein, J. M. (2011). Antioxidant and antiproliferative activities of loach ( Misgurnus anguillicaudatus ) peptides prepared by papain digestion. Journal of Agricultural and Food Chemistry, 59(14), 7948-7953. doi:10.1021/jf2016368
Zouhal, H., Jacob, C., Delamarche, P., & Gratas-Delamarche, A. (2008). Catecholamines and the effects of exercise, training and gender. Sports Medicine, 38(5), 401-423.
Zuniga, J. M., Housh, T. J., Camic, C. L., Bergstrom, H. C., Traylor, D. A., Schmidt, R. J., & Johnson, G. O. (2012). Metabolic parameters for ramp versus step incremental cycle ergometer tests. Applied Physiology, Nutrition, and Metabolism, 37(6), 1110-1117. doi:10.1139/h2012-098