簡易檢索 / 詳目顯示

研究生: 張鄭權
Chang Cheng, Chuan
論文名稱: 髖-膝外骨骼機器人在步態復健之研究
Research of a Hip-Knee Exoskeleton Robot on Gait Rehabilitation
指導教授: 陳俊達
Chen, Chun-Ta
口試委員: 林志哲
Lin, Chih-Jer
陳金聖
Chen, Chin-Sheng
黃有評
Huang, Yo-Ping
口試日期: 2021/06/24
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 108
中文關鍵詞: 穿戴式下肢輔助機器人步態分析線性擴展狀態觀測器線性自抗擾控制器模糊滑模控制模糊快速終端滑模控制法
英文關鍵詞: Wearable Lower Limb Exoskeleton, Gait analysis, LESO, LADRC, FSMC, FFTSM
研究方法: 實驗設計法行動研究法比較研究
DOI URL: http://doi.org/10.6345/NTNU202100664
論文種類: 學術論文
相關次數: 點閱:129下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文「髖-膝外骨骼機器人在步態復健之研究」旨在開發可協助復健之輔助步行穿戴式機器人。文中探討用於可穿戴式下肢輔助機器人外骨格的設計、控制和其應用,其功能著重在復健和對於尚有行動能力的病患的動力輔助,如帕金森氏症患者,並模擬下肢髖、膝關節的運動,提供復健步行及動力輔助。而為達成復建軌跡追隨,本文在控制系統當中設計以線性擴展觀測器(Linear Extend State Observer, LESO)為基礎之控制法,分別為線性自抗擾控制器(Linear Active Disturbance Rejection Controller, LADRC)、具線性擴展觀測器之模糊滑模控制(Fuzzy Slide Mode Control, LESO-FSMC)與具線性擴展觀測器之快速終端滑模控制法(Fuzzy Fast Terminal Slide Mode Control, LESO-FFTSMC),最後也進行其相關應用之探討,包含登階、循圓、步態凍結之偵測與解決。結果顯示本論文所開發的下肢輔助機器人可提供穿戴者復健輔助的效果。

    The thesis “Research of Hip-Knee Exoskeleton Robot on Gait Rehabilitation” aims to develop a wearable assisted walking robot for rehabilitation. This article introduces the hardware and control system design for the exoskeleton that emphasizes rehabilitation assistance to patients, like patients with Parkinson’s disease that still have walking ability, taking evaluation after rehabilitation. In order to give a hard for subjects, we design the LESO (Linear Extend State Observer) with three different control methods, LADRC (Linear Active Disturbance Rejection Controller)、LESO-FSMC (Fuzzy Slide Mode Control) and LESO-FFTSMC(Fuzzy Fast Terminal Slide Mode Control) for the robot. Finally, we presented related applications, including step-climbing, circling walking, for detection freezing of gait and solation. The results slow that the lower-limb assisted robot developed in this paper can provide wearers with assistive effects.

    第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 4 1.3 研究目的 12 1.4 論文架構 13 第二章 穿戴式髖-膝外骨骼機器人硬體設計與建置 14 2.1 設計系統總覽 14 2.2 機構設計 17 2.3 馬達與感測器選用 22 2.4 電路與軟體設計 25 第三章 控制器設計 29 3.1 LADRC控制法 29 3.1.1 LADRC穩定度證明 32 3.1.2 LADRC參數設計 33 3.2 具線性狀態擴展觀測器之模糊滑模控制器(LESO-FSMC) 35 3.2.1 LESO-FSMC穩定度證明 38 3.3 具線性狀態擴展觀測器之模糊快速終端滑模控制器(LESO-FFFTSMC) 39 3.3.1 LESO-FFFTSMC穩定度證明 42 第四章 穿戴式下肢外骨骼機器人步行測試 43 4.1 實驗設備 43 4.2空載步態軌跡追隨 45 4.2.1 LADRC控制法 45 4.2.2 LESO-FSMC控制法 48 4.2.3 LESO-FFTSMC控制法 51 4.2.4 實驗結果與討論 54 4.3 人穿著時的軌跡追隨 57 4.3.1 LADRC控制法 58 4.3.2 LESO-FSMC控制法 60 4.3.3 LESO-FFTSMC控制法 62 4.3.4 實驗結果與討論 64 第五章 步態復建相關應用 67 5.1雙腳行走測試 67 5.1.1 雙腿行走空載測試 68 5.1.2 雙腿行走人著測試 71 5.1.3 結果與討論 77 5.2 登階測試 78 5.2.1 登階空載測試 79 5.2.2 登階人著測試 82 5.2.3 結果與討論 88 5.3 循圓測試 89 5.3.1 人著順時鐘循圓測試 90 5.3.2 人著逆時鐘循圓測試 93 5.3.3 結果與討論 96 5.4應用於巴病病患步態凍結(FOG)之解決 97 第六章 結論與未來展望 104 參考文獻 105

    [1] https://www.ndc.gov.tw/Content_List.aspx?n=695E69E28C6AC7F3
    [2] Bogue, Robert. "Exoskeletons and robotic prosthetics: a review of recent developments." Industrial Robot: an international journal (2009), 36(5), 421-427.
    [3] Long, Yi, et al. "Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton." ISA transactions 67 (2017): 389-397.
    [4] Xiao, Feiyun, et al. "Design and evaluation of a 7-DOF cable-driven upper limb exoskeleton." Journal of Mechanical Science and Technology 32.2 (2018): 855-864.
    [5] M. Vukobratovic ”Legged Locomotion Robots and Anthropomorphic Mechanisms.” Belgrade, Serbia: Research Monograph, 1975.
    [6] Zoss, Adam B., Hami Kazerooni, and Andrew Chu. "Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX)." IEEE/ASME Transactions on mechatronics 11.2 (2006): 128-138.
    [7] Sankai, Yoshiyuki. "HAL: Hybrid assistive limb based on cybernics." Robotics research. Springer, Berlin, Heidelberg, 2010. 25-34.
    [8] https://www.orthobullets.com/foot-and-ankle/7001/gait-cycle
    [9] Wang, Wenkang, et al. "Design and Experimental Evaluation of Wearable Lower Extremity Exoskeleton with Gait Self-adaptivity." Robotica 37.12 (2019): 2035-2055.
    [10] Kuo, Arthur D. "The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective." Human movement science 26.4 (2007): 617-656.
    [11] Zhang, Li, et al. "Assistive devices of human knee joint: A review." Robotics and Autonomous Systems 125 (2020): 103394.
    [12] Kazerooni, Hami, et al. "On the control of the berkeley lower extremity exoskeleton (BLEEX)." Proceedings of the 2005 IEEE international conference on robotics and automation. IEEE, 2005.
    [13] Sanz-Merodio, Daniel, et al. "Control motion approach of a lower limb orthosis to reduce energy consumption." International journal of advanced robotic systems 9.6 (2012): 232.
    [14] You, Zhou, et al. "Design and simulation research of new linear active disturbance rejection controller." 2014 International Conference on Mechatronics and Control (ICMC). IEEE, 2014.
    [15] Kong, Kyoungchul, and Doyoung Jeon. "Design and control of an exoskeleton for the elderly and patients." IEEE/ASME Transactions on mechatronics 11.4 (2006): 428-432.
    [16] Long, Yi, et al. "Robust sliding mode control based on GA optimization and CMAC compensation for lower limb exoskeleton." Applied bionics and biomechanics 2016 (2016).
    [17] Ishigame, Atsushi, et al. "Sliding mode controller design based on fuzzy inference for nonlinear systems (power systems)." IEEE transactions on industrial Electronics 40.1 (1993): 64-70.
    [18] Jin, Xinglai, et al. "Single-input adaptive fuzzy sliding mode control of the lower extremity exoskeleton based on human–robot interaction." Advances in Mechanical Engineering 9.2 (2017): 1687814016686665.
    [19] Wang, Yueling, Runjie Shi, and Hongbin Wang. "ESO-based fuzzy sliding-mode control for a 3-DOF serial-parallel hybrid humanoid arm." Journal of Control Science and Engineering 2014 (2014).
    [20] Chen, Chao-Feng, et al. "Development and hybrid control of an electrically actuated lower limb exoskeleton for motion assistance." IEEE Access 7 (2019): 169107-169122.
    [21] Fan, Xiangwen, et al. "Fuzzy-type fast terminal sliding-mode controller for pressure control of pilot solenoid valve in automatic transmission." IEEE Access 7 (2019): 122342-122353.
    [22] Hsu, Li-Chun, et al. "A gravity compensation-based upper limb rehabilitation robot." 2012 American Control Conference (ACC). IEEE, 2012.
    [23] Uehara, Akira, Hiroaki Kawamoto, and Yoshiyuki Sankai. "Development of gait assist method for parkinson's disease patients with FOG in walking." 2016 55th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE). IEEE, 2016.
    [24] Wan, Shilong, et al. "Design and control strategy of humanoid lower limb exoskeleton driven by pneumatic artificial muscles." 2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP). IEEE, 2016.
    [25] 生物力學(歐耿良、魏鴻文著,五南出版社,2014)
    [26] 生理疾病職能治療學:I評估理論與技巧。(薛漪平,禾楓書局,2011)
    [27] Han, YaLi, and XingSong Wang. "The biomechanical study of lower limb during human walking." Science China Technological Sciences 54.4 (2011): 983-991.
    [28] Xia, Yuanqing, et al. "Attitude tracking of rigid spacecraft with bounded disturbances." IEEE Transactions on Industrial Electronics 58.2 (2010): 647-659.
    [29] Yu, Xinghuo, and Man Zhihong. "Fast terminal sliding-mode control design for nonlinear dynamical systems." IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49.2 (2002): 261-264.
    [30] Mentiplay, Benjamin F., et al. "Lower limb angular velocity during walking at various speeds." Gait & posture 65 (2018): 190-196.
    [31] Nieuwboer, Alice, et al. "Electromyographic profiles of gait prior to onset of freezing episodes in patients with Parkinson’s disease." Brain 127.7 (2004): 1650-1660.

    下載圖示
    QR CODE