研究生: |
鍾武雄 Chung Wu Hsung |
---|---|
論文名稱: |
玻璃深蝕刻技術開發應用於複合量子點合成之微反應晶片製作 Development of deep glass-etching technology for fabricating a microreactor of synthesizing composite quantum dots |
指導教授: |
程金保
Cheng, Chin-Pao 謝佑聖 Hsieh, Yu-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 122 |
中文關鍵詞: | 微反應晶片 、側蝕現象 、複合量子點 |
英文關鍵詞: | microreactor, lateral underetching ratio, compound quantum dots |
論文種類: | 學術論文 |
相關次數: | 點閱:235 下載:12 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要製作一應用於合成複合量子點之全玻璃微反應晶片。並將微流體系統之微流道、微混合器、白金加熱器及溫度感測器整合在此單晶片上。在玻璃微流道的製作方面,以較厚的光阻及鉻/金薄膜作為蝕刻保護層,可有效減少針孔現象的產生;並將蝕刻金膜之王水,換成不會破壞光阻之碘化鉀溶液,可使微流道邊緣之缺陷部份獲得改善。另外,在退火溫度對玻璃側向蝕刻(lateral underetching)的實驗中,證實了當退火溫度到達600 ℃時,可有效抑制Pyrex 7740嚴重的側蝕現象,經氫氟酸(HF)溶液蝕刻10分鐘後,其流道斷面寬度從498 m縮減至278 m,側蝕比(lateral underetching ratio)可從5降低至0.96。而Corning 1737與Soda-lime雖然不須經過退火處理過程,即可獲得較小之側蝕比,但是Soda-lime之表面粗糙度較差,因此本實驗選擇Corning 1737作為微反應晶片之基材。
在複合量子點的製備上,微流體系統擁有良好的質傳及熱傳效果,可以精確的控制反應溫度、反應時間及溶質濃度,因此可有效提升量子點的品質及改善奈米粒徑分佈不佳的問題。除此之外,對於反應溫度控制在200 ℃至280 ℃ 的硒化鎘(CdSe),其吸收波峰從450 nm移至550 nm,能隙大小從2.58 eV降低至2.3 eV,並推估其粒徑大小為2-6 nm。由此可知,當反應溫度升高時,吸收波峰往紅色波長的方向移動,而能階則隨著粒徑的增大而變小。
In this report, we fabricated an all-glass microreactor chip and used it to synthesize compound quantum dots. A microreactor chip integrates micro channels, a micro mixer, a Pt heater, and a temperature sensor on one glass chip. During fabrication of micro channels, a thick photoresist and Cr/Au layer were used as etching masks. Such etching masks could sufficiently reduce pinhole phenomenon. In addition, if we replaced aqua regia with KI solution, it would not damage the photoresist. Therefore, it could improve defects at edge of micro channels. If we considered annealing factor with different glass materials, the experimental results showed that if we annealed Pyrex 7740 to 600 ℃ and etched micro channels by using HF for 10 min, the channel width was found to be reduced from 498 m to 278 m. The lateral underetching ratio decreased from 5 to 0.96. Thus, we could improve the large lateral underetching of glass (Pyrex 7740) by annealing. However, the surface roughness of micro channels was high. On the other hand, it was not necessary for Corning 1737 to be annealed. We could get smaller lateral underetching ratio and better surface roughness of micro channel. As for Soda-lime, it didn’t have any relationship between annealing and lateral underetching ratio, but the surface roughness was high. Consequently, Corning 1737 was suitable material for making microreactor chip.
For preparation of compound quantum dots, microfluidic systems have good characteristic on good mass and heat transfer. It can precisely control the reaction temperature, reaction time, and concentration of the solute. Therefore, unlike traditional reaction which is used to produce quantum dots with different sizes, we can use microfluidic systems to synthesize uniform quantum dots. When the reaction temperature was controlled from 200-280 ℃, the absorbance peak was found to increase from 481 nm to 538 nm. its corresponding band gap was discovered to decrease from 2.58 eV to 2.3 eV.
1. 楊啟榮 等人, "微機電系統技術與應用", 精密儀器發展中心, 第四章, pp. 142 (2003).
2. A. Berthold, F. Laugere, H. Schellevis, C. R. D. Boer, M. Laros, R. M. Guijt, P. M. Sarro, and M. J. Vellekoop, "Fabrication of a glass-implemented microcapillary electrophoresis device with integrated contactless conductivity detection", Electrophoresis, Vol. 23, pp. 3511-3591 (2002).
3. 李國賓 等人, "下一波之生物晶片-微流體生醫晶片之應用及研發", 科學發展月刊, (2003).
4. C. Iliescu, J. Miao, and F. E.H. Tay, "Stress control in masking layers for deep wet micromachining of Pyrex glass", Sensors and Actuators A, Vol. 117, pp.286-292 (2005).
5. T. Diepold and E. Obermier, "Smoothing of ultrasonically drilled holes in borosilicate glass by wet chemical etching", Journal of Micromechanics and Microengineering, Vol. 6, pp. 29-32 (1996).
6. J. Kruger, W. Kautek, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, "Laser micromachining of barium aluminium borosilicate glass with pulse durations between 20 fs and 3 ps", Applied Surface Science, Vol. 127-129, pp. 892-898 (1998).
7. H. Wensink, J. W. Berenschot, H. V. Jansen, and M. C. Elwenspoek, "High resolution powder blast micromachining", IEEE, pp. 769-774 (2000).
8. 奈米材料, 競逐原子世界第二輯, 經濟部, 2003.
9. 吳明立, "微乳化系統製備雙金屬奈米粒子之研究", 國立成功大學博士論文, 台灣, 第一章, pp.16 (2001).
10. A. P. Alivisatos, "Perspectives on the physical chemistry of semiconductor nanocrystals", Journal of Physical Chemistry, Vol. 100, pp. 13226-13239, (1996).
11. S. Coe, W. K. Woo, M. Bawendi, and V. Bulovic, "Electroluminescence from single monolayers of nanocrystals in molecular organic devices", Nature Publishing Group, Vol. 420, pp. 800-803 (2002).
12. D. Bonnet, "Manufacturing of CSS CdTe solar cells", Thin Solid Films, Vol. 361-362, pp. 547-552 (2000).
13. S. Chang, M. Zhou, and C. P. Grover, "Information coding and retrieving using fluorescent semiconductor nanocrystals for object identification", Optics Express, Vol. 12, pp.143-148 (2004).
14. X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, "Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots", Nature Publishing Group, Vol. 21, pp. 41-46 (2003).
15. N. Toshima and T. Yonezawa, "Bimetallic nanoparticles - novel materials for Cchemical and physical applications", New J. Chem., pp. 1179 (1998).
16. C. D. Dushkin, S. Saita, K. Yoshie, and Y. Yamaguchi, "The kinetics of growth of semiconductor nanocrystals in a. hot amphiphile matrix", Adv. Colloid Interface Sci., pp. 37-78 (2000).
17. V. K. LaMer and R. H. Dinegar, "Theory, production and Mechanism of formation of monodispersed hydrosols", Journal of the American chemical society, Vol. 72, pp. 4847 (1950).
18. M. Gao, A. L. Rogach, A. Kornowski, A. Eychmuller, and H. Wellerl, "Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals", J. Phys. Chem. B., Vol.103, pp. 3065-3069 (1999).
19. S. P. Moulik and B. K. Paul, B. K., "Structure, dynamics and transport properties of microemulsions", Advances in Colloid and Interface Science, Vol. 78, pp. 99-195 (1998).
20. G. L. Messing, S. Hirano, and H. Hausner, "Ceramic powder science III", American Ceramic Society, (1990).
21. T. Schwalbe, V. Autze, and G. Wille, "Chemical Synthesis in Microreactors", CHIMIA, Vol. 56 , pp. 636-646 (2002).
22. John and A. deMello, " Microscale reactors: nanoscale products ", Lab on a chip, Vol. 4, pp. 11N-15N (2004).
23. J. B. Edel, R. Fortt, J. C. deMello, and A. J. deMello, " Microfluidic routes to the controlled production of nanoparticles", Chemical Communications, pp. 1136–1137 (2002).
24. H. Nakamura, Y. Yamaguchi, M. Miyazaki, M. Uehara, H. Maeda, and P. Mulvaney, " Continuous Preparation of CdSe Nanocrystals by a Microreactor ", Chemistry Letters, pp. 1072–1073 (2002).
25. H. Nakamura, Y. Yamaguchi, M. Miyazaki, H. Maeda, M. Uehara, and P. Mulvaney, " Preparation of CdSe nanocrystals in a micro-flow-reactor", Chemical Communications, Vol. 23, pp. 2844–2845 (2002).
26. H. Wang, X. Li, M. Uehara, Y. Yamaguchi, H. Nakamura, M. Miyazaki, H. Shimizu, and H. Maeda, "Continuous synthesis of CdSe-ZnS composite nanoparticles in a microfluidic reactor", Chemical Communications, pp. 48-49 (2004).
27. H. Nakamura, Asuka Tashiro, Y. Yamaguchi, M. Miyazaki, T. Watari, H. Shimizua, and H. Maeda, " Application of a microfluidic reaction system for CdSe nanocrystal preparation: their growth kinetics and photoluminescence analysis " Lab on a chip, Vol. 4, pp. 237-240 (2004).
28. J. Cheng and L. J. Kricka, "Material issues", Biochip Technology, Harwood, pp. 30 (2001).
29. A. Berthold, P. M. Sarro, and M. J. Vellekoop, "Two-step glass wet-etching for micro-fluidic devices", Proceedings of the SeSens Workshop, pp. 613-616 (2000).
30. A. Grosse, M. Grewe, and H. Fouckhardt, "Deep wet etching of fused silica glass for hollow capillary optical leaky waveguides in microfluidic devices", Journal of Micromechanics and Microengineering, Vol.11, pp.257-262 (2001).
31. M. Bu, T. Melvin, G. J. Ensell, J. S. Wilkinson, and A. G. R. Evans, "A new masking technology for deep glass etching and its microfluidic application", Sensors and Actuators A, Vol. 115, pp. 476-482 (2004).
32. C. Iliescu, J. Jing, F. E. H. Tay, J. Miao, and T. Sun, "Characterization of masking layers for deep wet etching of glass in an improved HF/HCl solution", Surface & Coatings Technology, Vol.198, pp. 314-318 (2005).
33. T. Corman, P. Enoksson, and G. Stemme, "Deep wet etching of borosilicate glass using an anodically bonded silicon substrate as mask", Journal of Micromechanics and Microengineering, Vol. 8, pp. 84-87 (1998).
34. D. S. C. Bien, P. V. Rainely, S. J. N. Mitchell, and H. S. Gamble, "Characterization of masking materials for deep glass micromachining", Journal of Micromechanics and Microengineering, Vol. 13, pp. S34-S40 (2003).
35. X. Li, T. Abe, and M. Esashi, "Deep reactive ion etching of Pyrex glass using SF6 plasma", Sensors and Actuators A, Vol. 87, pp. 139-145 (2001).
36. George Friedrich Wislicenus, "Fluid mechanics of turbomachinery", Dover Publications, McGraw-Hill, New York, (1965).
37. Ho, C-M, Tai, Y-C, "Micro-electro-mechanical system (MEMS) and fluid flows", Ann. Rev. Fluid Mechanics, pp. 579-612 (1998).
38. Ho, C-M, Tai, Y-C, "MEMS and its application for flowcontrol", J. Fluid Engr. (ASME), pp. 437-447 (1996).
39. J. Evans, D. Liepmann, and A. P. Pisano, "Proceedings of the IEEE micro electro mechanical systems", Nagoya, Japan, pp. 96-101 (1997).
40. R. M. Moroney, R. M. White, and R. T. Howe, Proceedings of the IEEE Micro Electro Mechanical Systems, Nara, Japan, pp. 277-282 (1991).
41. S. Böhm, K. Greiner, S. Schlautmann, S. de Vries, and A. van den Berg, "A rapid vortex micromixer for studying high-speed chemical reactions", Proceedings of the µ-TAS 2001 Symposium, pp. 25-27 (2001).
42. M. H. Oddy, J. G. Santiago, and J. C. Mikkelsen, "Electrokinetic instability micromixers", Proceedings of the -TAS 2001 Symposium, pp. 34-36 (2001).
43. H. Aref, "Stirring by chaotic advection", Journal of Fluid Mechanics, pp. 1-21 (1984).
44. C. P. Jen, C. Y. Wu, Y. C. Lin, and C. Y. Wu, "Design and simulation of the micromixer with chaotic advection in twisted microchannels", Lab on a Chip, pp. 77-81 (2003).
45. J. M. Ottino, "The kinematics of mixing: stretching, chaos, and transport", Cambridge University Press, New York, (1989).
46. S. W. Jones, O. M. Thomas, and H. Aref, "Chaotic advection by lamina flow in a twisted pipe", Journal of Fluid Mechanics, pp. 335-357 (1989).
47. R. H. Liu, M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref, and D. J. Beebe, "Passive mixing in a three-dimensional serpentine microchannel", Journal of Microelectromechanical System, pp. 190-197 (2000).
48. R. H. Liu, M. Ward, J. Bonanno, D. Ganser, M. Athavale, and P. Grodzinski, "Plastic in-line chaotic micromixer for biological applications", Proceedings of the -TAS 2001 Symposium, pp. 163-164 (2001).
49. M Koch, K Witt, A G Evans, and A Brunnschweiler, "Improved characterization technique for micromixers", Journal of Micromechanics and Microengineering, pp. 156-158 (1999).
50. 李啟甲, "功能玻璃", 化學工業出版社, (2004).
51. L. Brus, "Zero-dimensional excitons in semiconductor clusters ", IEEE Journal of quantum electronics, Vol. QE22, pp. 1909-44091914 (1986).