簡易檢索 / 詳目顯示

研究生: 鍾武雄
Chung Wu Hsung
論文名稱: 玻璃深蝕刻技術開發應用於複合量子點合成之微反應晶片製作
Development of deep glass-etching technology for fabricating a microreactor of synthesizing composite quantum dots
指導教授: 程金保
Cheng, Chin-Pao
謝佑聖
Hsieh, Yu-Sheng
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 122
中文關鍵詞: 微反應晶片側蝕現象複合量子點
英文關鍵詞: microreactor, lateral underetching ratio, compound quantum dots
論文種類: 學術論文
相關次數: 點閱:216下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要製作一應用於合成複合量子點之全玻璃微反應晶片。並將微流體系統之微流道、微混合器、白金加熱器及溫度感測器整合在此單晶片上。在玻璃微流道的製作方面,以較厚的光阻及鉻/金薄膜作為蝕刻保護層,可有效減少針孔現象的產生;並將蝕刻金膜之王水,換成不會破壞光阻之碘化鉀溶液,可使微流道邊緣之缺陷部份獲得改善。另外,在退火溫度對玻璃側向蝕刻(lateral underetching)的實驗中,證實了當退火溫度到達600 ℃時,可有效抑制Pyrex 7740嚴重的側蝕現象,經氫氟酸(HF)溶液蝕刻10分鐘後,其流道斷面寬度從498 m縮減至278 m,側蝕比(lateral underetching ratio)可從5降低至0.96。而Corning 1737與Soda-lime雖然不須經過退火處理過程,即可獲得較小之側蝕比,但是Soda-lime之表面粗糙度較差,因此本實驗選擇Corning 1737作為微反應晶片之基材。
    在複合量子點的製備上,微流體系統擁有良好的質傳及熱傳效果,可以精確的控制反應溫度、反應時間及溶質濃度,因此可有效提升量子點的品質及改善奈米粒徑分佈不佳的問題。除此之外,對於反應溫度控制在200 ℃至280 ℃ 的硒化鎘(CdSe),其吸收波峰從450 nm移至550 nm,能隙大小從2.58 eV降低至2.3 eV,並推估其粒徑大小為2-6 nm。由此可知,當反應溫度升高時,吸收波峰往紅色波長的方向移動,而能階則隨著粒徑的增大而變小。

    In this report, we fabricated an all-glass microreactor chip and used it to synthesize compound quantum dots. A microreactor chip integrates micro channels, a micro mixer, a Pt heater, and a temperature sensor on one glass chip. During fabrication of micro channels, a thick photoresist and Cr/Au layer were used as etching masks. Such etching masks could sufficiently reduce pinhole phenomenon. In addition, if we replaced aqua regia with KI solution, it would not damage the photoresist. Therefore, it could improve defects at edge of micro channels. If we considered annealing factor with different glass materials, the experimental results showed that if we annealed Pyrex 7740 to 600 ℃ and etched micro channels by using HF for 10 min, the channel width was found to be reduced from 498 m to 278 m. The lateral underetching ratio decreased from 5 to 0.96. Thus, we could improve the large lateral underetching of glass (Pyrex 7740) by annealing. However, the surface roughness of micro channels was high. On the other hand, it was not necessary for Corning 1737 to be annealed. We could get smaller lateral underetching ratio and better surface roughness of micro channel. As for Soda-lime, it didn’t have any relationship between annealing and lateral underetching ratio, but the surface roughness was high. Consequently, Corning 1737 was suitable material for making microreactor chip.
    For preparation of compound quantum dots, microfluidic systems have good characteristic on good mass and heat transfer. It can precisely control the reaction temperature, reaction time, and concentration of the solute. Therefore, unlike traditional reaction which is used to produce quantum dots with different sizes, we can use microfluidic systems to synthesize uniform quantum dots. When the reaction temperature was controlled from 200-280 ℃, the absorbance peak was found to increase from 481 nm to 538 nm. its corresponding band gap was discovered to decrease from 2.58 eV to 2.3 eV.

    摘 要 I 總目錄 Ⅲ 表目錄 V 圖目錄 Ⅵ 第一章 緒論 1 1.1 微機電系統與微反應晶片簡介 2 1.2 玻璃蝕刻技術 2 1.3 複合量子點簡介 8 1.3.1 量子點之光學理論 8 1.3.2 複合量子點之應用 9 第二章 文獻回顧 15 2.1 量子點之製備 15 2.2 微反應晶片合成之複合量子點 21 2.3 玻璃蝕刻技術在微反應晶片上應用 24 2.4 研究動機與目的 30 第三章 微反應晶片之設計與分析 31 3.1 微流體之混合原理 31 3.2 微加熱器與溫度感測器之原理 36 3.3 微反應晶片之設計 39 3.3.1 微混合器之設計 39 3.3.2 微加熱器與溫度感測器之設計 40 3.4 微加熱器與微混合器之特性模擬 47 第四章 製程規劃與檢測 62 4.1 製程規劃 62 4.1.1微反應晶片之特性檢測 64 4.2 量子點硒化鎘/硫化鋅溶液之準備 66 4.3 實驗設備與檢測 68 第五章 實驗結果與討論 79 5.1 量子點之製備 79 5.1.1 蝕刻罩幕與蝕刻液之選則 79 5.1.2 玻璃蝕刻之特性探討 82 5.1.2.1 退火溫度對表面粗糙度之影響 83 5.1.2.2 退火溫度對玻璃側向蝕刻之影響 84 5.2 微反應晶片製作 98 5.2.1 玻璃熔融接合 98 5.2.2 白金加熱器與溫度感測電極製作 98 5.3 微反應晶片之特性量測 103 5.3.1 混合效率測試 103 5.3.2 加熱器與感測器之特性測試 103 5.4 微反應晶片合成硒化鎘奈米微粒 109 第六章 結論 114 6.1 本文結論 114 6.2 未來展望 116 參考文獻 117 表 目 錄 表1-1 微機電製程技術分類表 4 表1-2 量子點之材料性質 11 表1-3 複合量子點之應用範圍 11 表2-1 奈米微粒之製備方法 18 表2-2 不同玻璃之成分(wt%) 26 表3-1 微機電製程技術分類表 51 表3-2 不同格點數對乙醇濃度相較之誤差量 51 表3-3 不同流速對乙醇濃度之標準差降低比率 52 表3-4 不同蝕刻深度之混合效果 52 表3-5 材料之性質 53 表4-1 化學藥品 67 表4-1 實驗設備 70 表5-1 退火溫度對玻璃側向蝕刻之影響 85 表5-2 金屬濺鍍製程參數 99 圖 目 錄 圖1-1 實驗室晶片功能示意圖 5 圖1-2 整合取樣、反應、分離及偵測之微毛細管電泳分析晶片 5 圖1-3 利用超音波鑽孔技術製作出500 µm之微孔洞 6 圖1-4 雷射加工製作之微孔洞 6 圖1-5 噴砂技術:(a)具磨蝕作用的Al2O3微粒;(b)經噴嘴高壓加速側視圖後,直接撞擊欲蝕刻之靶材 7 圖1-6 不同尺度下所對應之能階圖 12 圖1-7 有機/無機異質結構之有機發光二極體 12 圖1-8 有機/無機複合量子點太陽能電池之基本構造 13 圖1-9 應用在螢光編碼上之複合量子點 13 圖1-10 傳統染劑與量子點作為生物細胞標定之比較 14 圖2-1 製備奈米微粒之物理法及化學法 18 圖2-2 合成奈米微粒時,溶質濃度與時間之關係 19 圖2-3 合成奈米微粒之傳統反應器 19 圖2-4 奈米微粒之粒徑篩選過程 20 圖2-5 合成CdS奈米微粒之微流體系統 23 圖2-6 以ZnS修飾CdSe奈米微粒之微反應系統 23 圖2-7 玻璃之等向性蝕刻 26 圖2-8 較厚之光阻可有效減少針孔現象的產生 27 圖2-9 不同濃度之HCl對表面粗糙度影響 28 圖2-10 不同深度下側蝕的結果 28 圖2-11 藉由金的側壁保護,可有效抑制深蝕刻後側蝕現象的發生 29 圖2-12 (a) ICP-RIE加工之玻璃微結構;(b) ICP-RIE形成之結構缺 29 圖3-1 流體流動現象之示意圖 35 圖3-2 可增加混合效率之立體c型微管道結構 35 圖3-3 實驗流程圖 42 圖3-4 微反應晶片的功能架構圖 43 圖3-5 微混合器之立體示意圖 44 圖3-6 微流道與微混合器之示意圖 44 圖3-7 蝕刻光罩 45 圖3-8 白金加熱器與感測器之設計:(a)提供300 ℃之反應溫度合成CdSe;(b) 提供220 ℃之反應溫度與ZnS作表面修飾 46 圖3-9 立體c型結構之建模與網格化 53 圖3-10 五種不同格點數對相同模型之混合效率的影響 54 圖3-11 不同格點數之乙醇濃度分佈彩圖:(a) 665684;(b) 1144756 55 圖3-12 不同流速之混合效果 56 圖3-13 不同流速下,流道斷面之乙醇濃度分佈 57 圖3-14 不同蝕刻深度對混合效果之影響 58 圖3-15 蝕刻深度對混合效果之乙醇濃度分佈彩圖 59 圖3-16 白金加熱器之模型 60 圖3-17 微不同電壓下溫度分佈之情況:(a) 10 V;(b) 20 V;(c) 30 V 61 圖4-1 微反應晶片之製程流程圖 66 圖3-14 不同蝕刻深度對混合效果之影響 58 圖3-15 蝕刻深度對混合效果之乙醇濃度分佈彩圖 59 圖3-16 白金加熱器之模型 60 圖3-17 微不同電壓下溫度分佈之情況:(a) 10 V;(b) 20 V;(c) 30 V 61 圖4-1 微反應晶片之製程流程圖 65 圖4-2 黃光製程設備 72 圖4-3 熱蒸鍍機 73 圖4-3 DC&RF金屬濺鍍製程設備 73 圖4-5 顯微鏡暨影像量測與儲存系統 74 圖4-6 表面輪廓量測儀 74 圖4-7 可變焦光學顯微鏡 75 圖4-8 掃描式電子顯微鏡觀察 75 圖4-9 高溫熱處理爐 76 圖4-10 電源供應器 76 圖4-11 注射式幫浦 77 圖4-12 紅外線熱像儀 77 圖4-13 紫外光/可見光吸收光譜儀與螢光光譜儀 78 圖4-14 多功能量測系統 78 圖5-1 較厚之AZ 4620光阻可有效減少針孔現象的產生:(a) 8 m;(b) 16 m 86 圖5-2 (a) 利用65 ℃的王水蝕刻金時,流道邊緣之光阻有些部份會 因王水的攻擊而脫落;(b)經氫氟酸溶液蝕刻10分鐘後,脫 落光阻之區域,會造成微流道邊緣之缺陷 87 圖5-3 (a)以碘化鉀溶液蝕刻金時,光阻並不會受碘化鉀溶液破壞而 脫落;(b)經氫氟酸溶液蝕刻10分鐘後,微流道邊緣缺陷部 份將獲得改善 88 圖5-4 經氫氟酸溶液蝕刻10分鐘,所得之Soda-lime微流道形貌 89 圖5-5 Pyrex 7740與Corning 1737經氫氟酸溶液蝕刻10分鐘,所 得之微流道形貌 90 圖5-6 (a) Soda-lime, Ra=4078.1 Å;(b) Pyrex 7740, Ra=18.7 Å;(b) Corning 1737, Ra=11.4 Å 91 圖5-7 退火溫度對蝕刻表面粗糙度之影響 92 圖5-8 Pyrex 7740之退火溫度在600 ℃時,其表面粗糙度為140.6 Å 93 圖5-9 Corning 1737退火溫度升在850 ℃時,其表面粗糙度為63.4 Å 93 圖5-10 Pyrex 7740之AFM量測 94 圖5-11 Corning 1737之AFM量測 95 圖5-12 退火溫度對玻璃側向蝕刻之影響 96 圖5-13 當退火溫度從室溫升高至600 ℃時,Pyrex 7740之流道斷面 寬度從498 m縮減至278 m:(a) 498 m;(b) 278 m 97 圖5-14 上下兩流道對準之光學顯微鏡圖 100 圖5-15 尚未接合區域產生牛頓環現象 100 圖5-16 完成熔融接合之流道斷面圖:(a)全景圖;(b)放大圖 101 圖5-17 製作完成之白金電極 102 圖5-18 以酚酞指示計來觀察混合的情形 105 圖5-19 紅外線熱影像之剖面分佈 105 圖5-20 紅外線熱影像之細部溫度分佈 106 圖5-21 紅外線熱影像之3D溫度分佈圖 106 圖5-22 線寬25 m之白金溫度感測器電阻與溫度變化關係圖 106 圖5-23 線寬10 m之白金溫度感測器電阻與溫度變化關係圖 108 圖5-24 將反應試劑注入晶片中進行反應 111 圖5-25 四種反應溫度下合成之奈米微粒(200 ℃、220 ℃、240 ℃及280 ℃) 111 圖5-26 硒化鎘奈米微粒之紫外光/可見光吸收光譜圖 112 圖5-27 以波長365 nm紫外光照射下,不同粒徑可激發不同顏色的光 113

    1. 楊啟榮 等人, "微機電系統技術與應用", 精密儀器發展中心, 第四章, pp. 142 (2003).
    2. A. Berthold, F. Laugere, H. Schellevis, C. R. D. Boer, M. Laros, R. M. Guijt, P. M. Sarro, and M. J. Vellekoop, "Fabrication of a glass-implemented microcapillary electrophoresis device with integrated contactless conductivity detection", Electrophoresis, Vol. 23, pp. 3511-3591 (2002).
    3. 李國賓 等人, "下一波之生物晶片-微流體生醫晶片之應用及研發", 科學發展月刊, (2003).
    4. C. Iliescu, J. Miao, and F. E.H. Tay, "Stress control in masking layers for deep wet micromachining of Pyrex glass", Sensors and Actuators A, Vol. 117, pp.286-292 (2005).
    5. T. Diepold and E. Obermier, "Smoothing of ultrasonically drilled holes in borosilicate glass by wet chemical etching", Journal of Micromechanics and Microengineering, Vol. 6, pp. 29-32 (1996).
    6. J. Kruger, W. Kautek, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, "Laser micromachining of barium aluminium borosilicate glass with pulse durations between 20 fs and 3 ps", Applied Surface Science, Vol. 127-129, pp. 892-898 (1998).
    7. H. Wensink, J. W. Berenschot, H. V. Jansen, and M. C. Elwenspoek, "High resolution powder blast micromachining", IEEE, pp. 769-774 (2000).

    8. 奈米材料, 競逐原子世界第二輯, 經濟部, 2003.
    9. 吳明立, "微乳化系統製備雙金屬奈米粒子之研究", 國立成功大學博士論文, 台灣, 第一章, pp.16 (2001).
    10. A. P. Alivisatos, "Perspectives on the physical chemistry of semiconductor nanocrystals", Journal of Physical Chemistry, Vol. 100, pp. 13226-13239, (1996).
    11. S. Coe, W. K. Woo, M. Bawendi, and V. Bulovic, "Electroluminescence from single monolayers of nanocrystals in molecular organic devices", Nature Publishing Group, Vol. 420, pp. 800-803 (2002).
    12. D. Bonnet, "Manufacturing of CSS CdTe solar cells", Thin Solid Films, Vol. 361-362, pp. 547-552 (2000).
    13. S. Chang, M. Zhou, and C. P. Grover, "Information coding and retrieving using fluorescent semiconductor nanocrystals for object identification", Optics Express, Vol. 12, pp.143-148 (2004).
    14. X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, "Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots", Nature Publishing Group, Vol. 21, pp. 41-46 (2003).
    15. N. Toshima and T. Yonezawa, "Bimetallic nanoparticles - novel materials for Cchemical and physical applications", New J. Chem., pp. 1179 (1998).
    16. C. D. Dushkin, S. Saita, K. Yoshie, and Y. Yamaguchi, "The kinetics of growth of semiconductor nanocrystals in a. hot amphiphile matrix", Adv. Colloid Interface Sci., pp. 37-78 (2000).
    17. V. K. LaMer and R. H. Dinegar, "Theory, production and Mechanism of formation of monodispersed hydrosols", Journal of the American chemical society, Vol. 72, pp. 4847 (1950).
    18. M. Gao, A. L. Rogach, A. Kornowski, A. Eychmuller, and H. Wellerl, "Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals", J. Phys. Chem. B., Vol.103, pp. 3065-3069 (1999).
    19. S. P. Moulik and B. K. Paul, B. K., "Structure, dynamics and transport properties of microemulsions", Advances in Colloid and Interface Science, Vol. 78, pp. 99-195 (1998).
    20. G. L. Messing, S. Hirano, and H. Hausner, "Ceramic powder science III", American Ceramic Society, (1990).
    21. T. Schwalbe, V. Autze, and G. Wille, "Chemical Synthesis in Microreactors", CHIMIA, Vol. 56 , pp. 636-646 (2002).
    22. John and A. deMello, " Microscale reactors: nanoscale products ", Lab on a chip, Vol. 4, pp. 11N-15N (2004).
    23. J. B. Edel, R. Fortt, J. C. deMello, and A. J. deMello, " Microfluidic routes to the controlled production of nanoparticles", Chemical Communications, pp. 1136–1137 (2002).
    24. H. Nakamura, Y. Yamaguchi, M. Miyazaki, M. Uehara, H. Maeda, and P. Mulvaney, " Continuous Preparation of CdSe Nanocrystals by a Microreactor ", Chemistry Letters, pp. 1072–1073 (2002).
    25. H. Nakamura, Y. Yamaguchi, M. Miyazaki, H. Maeda, M. Uehara, and P. Mulvaney, " Preparation of CdSe nanocrystals in a micro-flow-reactor", Chemical Communications, Vol. 23, pp. 2844–2845 (2002).
    26. H. Wang, X. Li, M. Uehara, Y. Yamaguchi, H. Nakamura, M. Miyazaki, H. Shimizu, and H. Maeda, "Continuous synthesis of CdSe-ZnS composite nanoparticles in a microfluidic reactor", Chemical Communications, pp. 48-49 (2004).
    27. H. Nakamura, Asuka Tashiro, Y. Yamaguchi, M. Miyazaki, T. Watari, H. Shimizua, and H. Maeda, " Application of a microfluidic reaction system for CdSe nanocrystal preparation: their growth kinetics and photoluminescence analysis " Lab on a chip, Vol. 4, pp. 237-240 (2004).
    28. J. Cheng and L. J. Kricka, "Material issues", Biochip Technology, Harwood, pp. 30 (2001).
    29. A. Berthold, P. M. Sarro, and M. J. Vellekoop, "Two-step glass wet-etching for micro-fluidic devices", Proceedings of the SeSens Workshop, pp. 613-616 (2000).
    30. A. Grosse, M. Grewe, and H. Fouckhardt, "Deep wet etching of fused silica glass for hollow capillary optical leaky waveguides in microfluidic devices", Journal of Micromechanics and Microengineering, Vol.11, pp.257-262 (2001).
    31. M. Bu, T. Melvin, G. J. Ensell, J. S. Wilkinson, and A. G. R. Evans, "A new masking technology for deep glass etching and its microfluidic application", Sensors and Actuators A, Vol. 115, pp. 476-482 (2004).
    32. C. Iliescu, J. Jing, F. E. H. Tay, J. Miao, and T. Sun, "Characterization of masking layers for deep wet etching of glass in an improved HF/HCl solution", Surface & Coatings Technology, Vol.198, pp. 314-318 (2005).
    33. T. Corman, P. Enoksson, and G. Stemme, "Deep wet etching of borosilicate glass using an anodically bonded silicon substrate as mask", Journal of Micromechanics and Microengineering, Vol. 8, pp. 84-87 (1998).
    34. D. S. C. Bien, P. V. Rainely, S. J. N. Mitchell, and H. S. Gamble, "Characterization of masking materials for deep glass micromachining", Journal of Micromechanics and Microengineering, Vol. 13, pp. S34-S40 (2003).
    35. X. Li, T. Abe, and M. Esashi, "Deep reactive ion etching of Pyrex glass using SF6 plasma", Sensors and Actuators A, Vol. 87, pp. 139-145 (2001).
    36. George Friedrich Wislicenus, "Fluid mechanics of turbomachinery", Dover Publications, McGraw-Hill, New York, (1965).
    37. Ho, C-M, Tai, Y-C, "Micro-electro-mechanical system (MEMS) and fluid flows", Ann. Rev. Fluid Mechanics, pp. 579-612 (1998).
    38. Ho, C-M, Tai, Y-C, "MEMS and its application for flowcontrol", J. Fluid Engr. (ASME), pp. 437-447 (1996).
    39. J. Evans, D. Liepmann, and A. P. Pisano, "Proceedings of the IEEE micro electro mechanical systems", Nagoya, Japan, pp. 96-101 (1997).
    40. R. M. Moroney, R. M. White, and R. T. Howe, Proceedings of the IEEE Micro Electro Mechanical Systems, Nara, Japan, pp. 277-282 (1991).
    41. S. Böhm, K. Greiner, S. Schlautmann, S. de Vries, and A. van den Berg, "A rapid vortex micromixer for studying high-speed chemical reactions", Proceedings of the µ-TAS 2001 Symposium, pp. 25-27 (2001).
    42. M. H. Oddy, J. G. Santiago, and J. C. Mikkelsen, "Electrokinetic instability micromixers", Proceedings of the -TAS 2001 Symposium, pp. 34-36 (2001).
    43. H. Aref, "Stirring by chaotic advection", Journal of Fluid Mechanics, pp. 1-21 (1984).
    44. C. P. Jen, C. Y. Wu, Y. C. Lin, and C. Y. Wu, "Design and simulation of the micromixer with chaotic advection in twisted microchannels", Lab on a Chip, pp. 77-81 (2003).
    45. J. M. Ottino, "The kinematics of mixing: stretching, chaos, and transport", Cambridge University Press, New York, (1989).
    46. S. W. Jones, O. M. Thomas, and H. Aref, "Chaotic advection by lamina flow in a twisted pipe", Journal of Fluid Mechanics, pp. 335-357 (1989).
    47. R. H. Liu, M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref, and D. J. Beebe, "Passive mixing in a three-dimensional serpentine microchannel", Journal of Microelectromechanical System, pp. 190-197 (2000).
    48. R. H. Liu, M. Ward, J. Bonanno, D. Ganser, M. Athavale, and P. Grodzinski, "Plastic in-line chaotic micromixer for biological applications", Proceedings of the -TAS 2001 Symposium, pp. 163-164 (2001).
    49. M Koch, K Witt, A G Evans, and A Brunnschweiler, "Improved characterization technique for micromixers", Journal of Micromechanics and Microengineering, pp. 156-158 (1999).
    50. 李啟甲, "功能玻璃", 化學工業出版社, (2004).
    51. L. Brus, "Zero-dimensional excitons in semiconductor clusters ", IEEE Journal of quantum electronics, Vol. QE22, pp. 1909-44091914 (1986).

    QR CODE