簡易檢索 / 詳目顯示

研究生: 林東源
Lin, Tung-Yuan
論文名稱: 以雲端運算為基礎之增強型同時定位與建圖
Enhanced Simultaneous Localization and Mapping (ESLAM) Based on Cloud Computing
指導教授: 許陳鑑
Hsu, Chen-Chien
王偉彥
Wang, Wei-Yen
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 77
中文關鍵詞: 同時定位與建圖FastSLAMHadoopHBase雲端運算
英文關鍵詞: SLAM, FastSLAM, Hadoop, HBase, Cloud Computing
論文種類: 學術論文
相關次數: 點閱:203下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • FastSLAM演算法常常被用來解決同時定位與建圖問題。雖然FastSLAM2.0的運算效率比EKF-SLAM來的高,但是隨著地標數目增加的時候,FastSLAM2.0會因為需要多次比對量測資訊與粒子內存的地標資訊,而降低運算效率。因此,本論文提出一改良作法,稱之為「增強型同時定位與建圖演算法(ESLAM)」,避免只用里程計資訊預測機器人位置,也使用環境資訊更新機器人預測位置,並選擇與量測資訊相似性最高的地標資訊先更新機器人位置後,再更新地標位置。模擬結果顯示,我們所提出的演算法相較於FastSLAM2.0具有較高的運算效率,且具有較良好的定位與建圖準確度,而相較於CESLAM雖然犧牲了些許運算效率,但提升了準確度。由於SLAM演算法常需要複雜計算,使得執行效率低落,無法達成即時處理的目標。因此,我們提出一雲端運算架構,將計算密集的任務卸載至雲端運算平台,運用雲端的快速運算以提升演算法之效能,其作法係利用RPC傳輸協定搭配雲端平行化架構進行以雲端為基礎之增強型同時定位與建圖。實驗結果證明,本方法可以確保定位與建圖的準確度之外,並運用雲端運算提升同時定位與建圖之執行效率。

    FastSLAM is currently the most common solution to SLAM problems. Although the processing speed of FastSLAM2.0 is already faster than the EKF-SLAM, it could become slower under the circumstances of too many landmarks existence, where comparison measurements needed to be taken many times and would lower the calculating effectiveness. Therefore, this thesis proposes an improved version, Enhanced SLAM, which avoids using the odometer information only but also include the sensor measurements to estimate the robot’s pose. We used the landmark information that has the largest likelihood to update the robot’s pose first and then update the landmarks’ location. Compared to the FastSLAM2.0, our algorithm improved both the accuracy and the efficiency. Compared to the CESLAM, we improved the accuracy of locating and mapping but sacrificed some calculating effectiveness. The calculation consumes too much time and thus fails to achieve the goal of instant processing, hence, we utilized the high-speed of the cloud computing based on the combination of RPC Transfer Protocol and cloud parallel system to process ESLAM. The experiment results showed that this solution we proposed can improve the accuracy as well as the effectiveness of locating and mapping.

    摘   要 I ABSTRACT II 致   謝 III 目   錄 IV 表 目 錄 VI 圖 目 錄 VII 第一章 緒論 1 1.1 研究動機與背景 1 1.2 研究目的 3 1.3 論文架構 6 第二章 文獻探討與回顧 7 2.1 理論基礎 7 2.1.1 卡曼濾波器(Kalman Filter) 7 2.1.2 粒子濾波器(Particle Filter) 9 2.2 SLAM演算法 13 2.2.1 快速型同時定位與建圖演算法1.0 (FastSLAM 1.0) 14 2.2.2 快速型同時定位與建圖演算法2.0 (FastSLAM 2.0) 17 2.2.3 具有高計算效率之同時定位與建圖演算法 (CESLAM) 21 2.3 雲端機器人同時定位與建圖 27 第三章 增強型同時定位與建圖演算法(ESLAM) 29 第四章 以雲端運算為基礎之增強型同時定位與建圖 36 4.1 雲端平台 36 4.1.1 端點協同處理器(Endpoint) 38 4.2 ESLAM雲端架構 40 第五章 實驗結果 47 5.1 實驗環境 47 5.2 ESLAM模擬結果 48 5.3 ESLAM雲端實驗結果 56 5.4 實驗討論 66 第六章 結論與未來展望 68 6.1 結論 68 6.2 未來展望 68 參考文獻 70 自傳 75 學術成就 77

    [1]. H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: part I,” IEEE Robot Automation Magazine, vol. 13, no. 2, pp. 99-110, 2006.
    [2]. J. J. Leonard and H. F. Durrant-Whyte, “Mobile robot localization by tracking geometric beacons,” IEEE Trans. on Robotics and Automation, vol. 7, no. 3, pp. 376-382, 1991.
    [3]. R. Chatila and J. P. Laumond, “Position referencing and consistent world modeling for mobile robots,” in Proc. IEEE International Conference on Robotics and Automation, St. Louis, 1985, pp. 138-145.
    [4]. H. Durrant-Whyte, D. Rye, and E. Nebot, “Localization of automatic guided vehicles,” in Proc. 7th International Symposium on Robotics Research (ISRR’95), 1996, pp. 613-625.
    [5]. J. J. Leonard and H. J. S. Feder, “A computationally efficient method for large-scale concurrent mapping and localization,” in Proc. Ninth International Symposium on Robotics Research (ISRR’99), 2000, pp. 169-176.
    [6]. J. Guivant, E. Nebot, and S. Baiker, “Localization and map building using laser range sensors in outdoor applications,” Journal of Robotic Systems, vol. 17, no. 10, pp. 565-583, 2000.
    [7]. S. B. Williams, P. Newman, G. Dissanayake, and H. F. Durrant-Whyte, “Autonomous underwater simultaneous localisation and map building,” in Proc. IEEE International Conference on Robotics and Automation (ICRA), San Francisco, 2000, pp. 1793-1798.
    [8]. R. C. Smith and P. Cheeseman, “On the representation and estimation of spatial uncertainty,” International Journal of Robotics, vol. 5, no. 4, pp. 56-58, 1986.
    [9]. S. J. Julier and J. K. Uhlmann, “A counter example to the theory of simultaneous localization and map building,” in Proc. IEEE International Conference on Robotics and Automation, 2001, pp. 4238-4243.
    [10]. J. E. Guivant and E. M. Nebot, “Optimization of the simultaneous localization and map-building algorithm for real-time implementation,” IEEE Trans. on Robotics and Automation, vol. 17, no. 3, pp. 242-257, 2001.
    [11]. J. Neira and J. D. Tardos, “Data association in stochastic mapping using the joint compatibility test,” IEEE Trans. on Robotics and Automation, vol. 17, no. 6, pp. 890-897, 2001.
    [12]. A. Chatterjee and F. Matsuno, “A neuro-fuzzy assisted extended Kalman filter based approach for Simultaneous Localization and Mapping (SLAM) problems,” IEEE Trans. on Fuzzy Systems, vol. 15, no. 5, pp. 984-997, 2007.
    [13]. A. Chatterjee and F. Matsuno, “A Geese PSO tuned fuzzy supervisor for EKF based solutions of simultaneous localization and mapping (SLAM) problems in mobile robots,” Expert Systems with Applications, vol. 37, no. 8, pp. 5542-5548, 2010.
    [14]. A. Chatterjee, “Differential evolution tuned fuzzy supervisor adapted, extended Kalman filtering for SLAM problems in mobile robots,” Robotica, vol. 27, no. 3, pp. 411-423, 2009.
    [15]. S. B. Williams, H. Durrant-Whyte, and G. Dissanayake, “Constrained initialization of the simultaneous localization and mapping algorithm,” International Journal of Robotics Research, vol. 22, no. 7-8, pp. 541-564, 2003.
    [16]. G. Dissanayake, S. B. Williams, H. Durrant-Whyte, and T. Bailey, “Map management for efficient simultaneous localization and mapping (SLAM),” Autonomous Robots, vol. 12, no. 3, pp. 267-286, 2002.
    [17]. S. B. Williams, G. Dissanayake, and H. Durrant-Whyte, “An efficient approach to the simultaneous localisation and mapping problem,” in Proc. IEEE International Conference on Robotics and Automation, 2002, pp. 406-411.
    [18]. S. B. Williams, G. Dissanayake, and H. Durrant-Whyte, “Towards multi-vehicle simultaneous localisation and mapping,” in Proc. IEEE International Conference on Robotics and Automation, Washington, 2002, pp. 2743-2748.
    [19]. K. Murphy, “Bayesian map learning in dynamic environments,” Neural Information Proceedings System, vol. 12, pp. 1015-1021, 2000.
    [20]. M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges,” in Proc. International Joint Conference on Artificial Intelligence, 2003, pp. 1151-1156.
    [21]. M. Montemerlo and S. Thrun, “Simultaneous localization and mapping with unknown data association using FastSLAM,” in Proc. IEEE International Conference on Robotics and Automation, 2003, pp. 1985-1991.
    [22]. C.-K. Yang, C.-C. Hsu, and Y.-T. Wang, “Computationally efficient algorithm for simultaneous localization and mapping (SLAM),” in Proc. IEEE International Conference on Networking, Sensing and Control (ICNSC), 2013, pp. 328-332.
    [23]. 鄧宏志,結合粒子群最佳化法之雙層粒子濾波器於移動機器人的定位與地圖建置,博士論文,淡江大學電機工程學系,民國100年。
    [24]. R. Arumugam, V. Enti, B. Liu, X. Wu, K. Baskaran, F. Kong, A. Kumar, D. Meng, and G. Kit, “DAvinCi: A cloud computing framework for service robots,” in Proc. 2010 IEEE International Conference on Robotics and Automation, Anchorage, USA, May 3-7, 2010, pp. 3084-3089.
    [25]. Y. C. Ho and R. Lee, “A Bayesian approach to problems in stochastic estimation and control,” IEEE Trans. on Automatic Control, vol. 9, no. 4, pp. 333-339, 1964.
    [26]. Markov property - from Wikipedia Website http://en.wikipedia.org/wiki/Markov_property
    [27]. P. S. Maybeck, Stochastic Models, Estimation, and Control, Volume 1, Academic Press, Inc., 1979.
    [28]. R. G. Brown and P. Y. C. Hwang, Introduction to Random Signals and Applied Kalman Filtering, Second Edition, John Wiley & Sons, Inc., 1992.
    [29]. O. L. R. Jacobs, Introduction to Control Theory, 2nd Edition. Oxford University Press., 1993.
    [30]. G. Welch and G. Bishop, “An introduction to the Kalman filter,” UNC-Chapel Hill, TR 95-041, July 24, 2006.
    [31]. A. Doucet, N. De Freitas, and N.J. Gordon, Sequential Monte Carlo Methods in Practice, Springer, 2001.
    [32]. S. J. Julier and J. K. Uhlmann “A new extension of the Kalman filter to nonlinear systems,” in Proc. AeroSense: The 11th Int. Symp. on Aerospace/Defence Sensing, Simulation and Controls, Orlando, USA, vol. 3068, 1997, pp. 182-193.
    [33]. M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking,” IEEE Trans. on Signal Processing, vol. 50, no. 2, pp. 174-188, 2002.
    [34]. G. Kitagawa, “Monte Carlo filter and smoother for non-Gaussian nonlinear state space models,” Journal of Computational and Graphical Statistics, vol. 5, no. 1, pp. 1-25, 1996.
    [35]. I. Rekleitis, “A particle filter tutorial for mobile robot localization,” Technical Report TR-CIM-04-02, Centre for Intelligent Machines, McGill University, Montreal, Quebec, Canada, 2004.
    [36]. F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte Carlo localization for mobile robots,” in Proc. IEEE International Conference on Robotics and Automation, 1999, pp. 1322-1328.
    [37]. S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, the MIT Press, 2005.
    [38]. C.-C. Hsu, C.-C. Wong, H.-C. Teng, and C.-Y. Ho, “Localization of mobile robots via an enhanced particle filter incorporating tournament selection and nelder-mead simplex search,” International Journal of Innovative Computing, Information and Control, vol. 7, no. 7A, pp. 3725-3737, July 2011.
    [39]. Tom White, Hadoop: The Definitive Guide, O'Reilly Media, Third Edition, 2012.
    [40]. J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clusters,” OSDI 2004.
    [41]. K. Ayush and N. K. Agarwal, “Real time visual SLAM using cloud computing,” in Proc. IEEE International Conference on Computer, Communication Networking Techonologies (ICCCNT), July 2013, pp. 1-7.
    [42]. G. Klein and D. Murray, “Parallel tracking and mapping for small AR workspaces,” in Proc. Sixth IEEE and ACM International Symposium on Mixed and Augmented Reality, 2007, pp. 225-234.
    [43]. L. Riazuelo, J. Civera, and J. M. M. Montiel, “C2TAM: A Cloud framework for cooperative tracking and mapping,” Robotics and Autonomous Systems, vol. 62, no. 4, pp. 401-413, April, 2014.
    [44]. G. Mohanarajah, V. Usenko, M. Singh, R. D’Andrea, and M. Waibel, “Cloud-based collaborative 3D mapping in real-time with low-cost robots,” IEEE Trans. on Automation Science and Engineering, vol. 12, no. 2, pp. 423-431, 2015.
    [45]. S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” SOSP’03, Bolton Landing, New York, USA, Oct. 19-22, 2003.
    [46]. L. George, HBase: The Definitive Guide, O’Reilly Media, Inc., 2011.
    [47]. F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A Distributed Storage System for Structured Data,” OSDI 2006.

    下載圖示
    QR CODE