簡易檢索 / 詳目顯示

研究生: 林欣穎
LIN, Hsin-Ying
論文名稱: 籃球投籃命中辨識暨自動化計分系統驗證
Recognition Verification for Basketball Shooting and Automatic Scoring System
指導教授: 張家豪
Chang, Jia-Hao
口試委員: 何金山
Ho, Chin-Shan
林政宏
Lin, Cheng-Hung
張家豪
Chang, Jia-Hao
口試日期: 2022/01/13
學位類別: 碩士
Master
系所名稱: 體育與運動科學系
Department of Physical Education and Sport Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 40
中文關鍵詞: 機器視覺籃球自主訓練系統投籃熱區投籃命中率
英文關鍵詞: machine vision, basketball self-training system, shot chart, field goal percentage
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200670
論文種類: 學術論文
相關次數: 點閱:178下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:建構籃球投籃辨識系統,期望運用此系統能以簡易器材達成快速的數據分析,增進球隊訓練及比賽的效率。方法:錄製投籃影像,並將影像輸入以 YOLOv4 所建構的籃球投籃辨識系統,進行實際投籃影像的分析,拍攝畫面包含籃球半場的角落四點,共有五種不同目標投球數,每一個目標投球數皆有不同拍攝角度及不同背景環境的試投,共有十五個時間介於 1分 30 秒到 5 分 30 秒的影像片段,讓此系統進行投籃出手及投籃進球的判定,並與人工紀錄進行比較。結果:對於籃球投籃出手的整體辨識準確率能達到 91.36%,對於籃球投籃進球的整體辨識準確率能達到 75.31%;在不同的拍攝角度與背景環境中,投籃出手及命中的辨識準確率皆無差異;在各個投籃位置中的出手及命中的辨識準確率也無差異,這表示此系統在室內籃球場中,不論在不同角度、背景環境及投籃位置都能夠進行穩定的辨識。結論:透過以機器學習為基礎的籃球投籃辨識系統,能夠紀錄投籃練習時的出手分布及投籃命中情形,雖然目前辨識效果有限,但未來此系統仍具有實行的可能性,往後可增加多人多球投籃影像,讓此系統持續學習、精進,也能更符合實際練習及比賽的的情境。

    Purpose: The purpose of this study is to develop a basketball shooting recognition system. It is expected that this system will achieve rapid data analysis with simple equipment. Methods: The basketball shooting recognition system established with YOLOv4 was used to collect the data of actual shooting images. The images included four corners of the basketball half-court, and five different shooting target videos were recorded. Each target video had a different video shooting angle and background, with 15 videos ranging from 1 min 30 s to 5 min 30 s. The system was used to analyze the basketball shots and shooting goals, and the results were compared with manual records. Results: The overall recognition accuracy of basketball shots reached 91.36%, and the shooting goals reached 75.31%. In the different video shooting angles and backgrounds and different shooting positions on the court, there was no significant difference in the identification accuracy of basketball shots and shooting goals. Hence, the proposed system can be reliably identified in different video shooting angles, backgrounds, and basketball shooting positions on indoor basketball courts. Conclusion: Through the basketball shooting identification system based on machine learning, we can record the distribution of basketball shots and shooting goals. Although the identification effect is currently limited, it is still possible to implement this system in the future. In future studies, the images of multiplayer and multiball shooting should be increased so that the system can continue learning and improving to make it more consistent with actual practice and competitions.

    第壹章 緒論 1 第一節 研究背景 1 第二節 研究問題 2 第三節 研究的重要性 2 第四節 研究目的 2 第五節 研究假設 3 第六節 研究範圍與限制 3 第七節 操作性名詞定義解釋 4 第貳章 文獻探討 7 第一節 籃球跳投動作分析 7 第二節 穿戴式科技應用於籃球數據分析 9 第三節 物件追蹤與辨識應用於運動場域 12 第四節 小節 14 第參章 研究方法 15 第一節 研究對象 15 第二節 實驗時間與地點 15 第三節 實驗儀器與設備 15 第四節 實驗場地與布置 16 第五節 實驗方法 17 第六節 實驗流程與步驟 18 第七節 資料處理 20 第肆章 結果 21 第一節 三種組別中投籃出手、命中的次數統計及準確率的差異 22 第二節 三種組別之間投籃出手準確率及投籃命中準確率之比較 25 第三節 在不同投籃位置下投籃出手準確率及投籃命中準確率的差異 26 第伍章 討論 28 第一節 機器辨識準確率 28 第二節 機器對於事件判斷錯誤的可能原因 29 第三節 不同投籃出手位置對於投籃出手及命中辨識準確率的影響 31 第陸章 結論與建議 32 參考文獻 33 附錄 38

    王駿發、歐陽諺、蔡安朝、吳韋慶(2020)。可抗遮蔽人臉偵測與辨識系統。電機工程會刊,創刊號1,1-7。https://doi.org/10.6949/KHCIEE.202007_(1).0001
    呂青山(2010)。檢討 2007∼2008 年之攻守技術表現與備戰2008∼2009年-以台藝大男籃隊參加大專籃球聯賽為例。藝術學報,86,255-267。https://doi.org/10.6793/JNTCA.201004.0255
    林恭弘(2018)。籃球優秀運動員接球與運球跳投之運動學分析 (未出版碩士論文)。國立臺灣師範大學,臺北市。https://doi.org/10.6793/10.6345/THE.NTNU.DPE.022.2018.F03
    李雲光(2007)。不同投籃姿勢各關節運動學分析。大專體育學刊,9(4),113-123。https://doi.org/10.5297/ser.200712_9(4).0009
    李宏毅(2016)。專題-什麼是深度學習。國立交通大學丘成桐中心。
    李逸驊、蔡琪揚、陳韋翰、黃冠勛、戴沁琳(2019)。穿戴加速規測量大專籃球聯賽公開男生組第一級隊伍之運動強度。大專體育學刊,21(4),342-352。https://doi.org/10.5297/ser.201912_21(4).0004
    李建興、游凱倫、林應璞(2010)。即時動態車牌辨識。技術學刊,25(2),151-165。https://doi.org/10.29507/JT.201006.0007
    周育晨、李恆儒(2020)。以穿戴式裝置探討不同專項位置籃球員與訓練情境之運動負荷。體育學報,53(3),315-326。https://doi.org/10.6222/pej.202009_53(3).0004
    相子元、石又、何金山(2012)。感測科技於運動健康科學之應用。體育學報,45(1),1-12。https://doi.org/10.6222/pej.4501.201203.0701
    科技部 (2018年)。「精準科研助攻,再創運動巔峰」精準運動科學研究專案計畫啟動。取自https://www.most.gov.tw/folksonomy/detail?cv=1&article_uid=ca77e278-b376-46c1-b622-ee3c826cf6d5&l=CH&menu_id=9aa56881-8df0-4eb6-a5a7-32a2f728
    馬國濂(2011)。排球影像分析—運動員軌跡之移動與跳躍的區別 (未出版碩士論文)。國立交通大學,新竹市。
    徐琮瑋、丁美琴、吳正杰(2012)。新舊三分線投籃之動作分析-以大專籃球選手為例。輔仁大學體育學刊,11,138-151。https://doi.org/10.29697/JPE.201205.0009
    陳昱丞(2017)。基於卷積神經網路之車牌辨識系統(未出版碩士論文)。國立交通大學,新竹市。
    陳信銘、鄭維恆、黃子峻、郭萓聖、簡大為 (2018)。結合深度學習演算法應用於道路車輛影像識別。電工通訊季刊,2018(4),30-39。https://doi.org/10.6328/CIEE.201812_(4).0004
    陳錦偉(2009)。大專男子籃球選手三分線投籃動作之生物力學特性分析。大專體育學術專刊,98年度,601-609。https://doi.org/10.6695/AUES.200905_98.0080
    許立德、蔡虔祿(2005)。籃球不同距離跳投動作之探討。大專體育,(81),202-209。 https://doi.org/10.6162/SRR.2005.81.31
    張傑閔、張厥煒(2007)。運動視訊場景中動態物件搜尋與追蹤方法。臺北科技大學學報,40(1),59-73。https://doi.org/10.29768/JNTUT.200703.0006
    湯文慈、孫錦祥、黃奕銘(2009)。優秀與一般籃球選手跳投動作之運動學分析。大專體育學刊,11(3),69-79。https://doi.org/10.5297/ser.200909_11(3).0005
    教育部體育署(2014)。青少年籃球教練指南。取自https://www.sa.gov.tw/PageContent?n=2517
    教育部體育署(2020)。中華民國109年運動現況調查。取自i運動資訊平台。https://isports.sa.gov.tw/Apps/TIS08/TIS0801M_01V1.aspx?MENU_CD=M07&ITEM_CD=T01&MENU_PRG_CD=12&LEFT_MENU_ACTIVE_ID=26
    黃志勝(2018)。卷積神經網路 (Convolutional neural network, CNN) — 卷積運算、池化運算。取自https://chih-sheng-huang821.medium.com/%E5%8D%B7%E7%A9%8D%E7%A5%9E%E7%B6%93%E7%B6%B2%E8%B7%AF-convolutional-neural-network-cnn-%E5%8D%B7%E7%A9%8D%E9%81%8B%E7%AE%97-%E6%B1%A0%E5%8C%96%E9%81%8B%E7%AE%97-856330c2b703
    黃冠勛、林昀昀、張恩崇、相子元(2018)。穿戴式科技應用於大專甲組女子排球選手比賽與訓練之監控。華人運動生物力學期刊,15(1),30-36。
    覃素莉(2002)。不同距離及不同動作投籃分析 (未出版碩士論文)。國立體育學院,桃園縣。
    粘為博、陳世昕、吳依玲、林修宇、許翔鈞(2018)。自動駕駛車之深度學習影像辨識與預測。電工通訊季刊,電工通訊季刊,2018(3),1-11。https://doi.org/10.6328/CIEE.201809_(3).0001
    葉良志(2010)。女子籃球規格改變對投籃動作之影響。運動研究,19(1),23-33。https://doi.org/10.6167/JSR/2010.19(1)3
    蔡俊明、魏家瑜(2018)。以深度學習YOLOv3進行雪山隧道之車輛偵測和分類。國教新知,65(4),43-61。https://doi.org/10.6701/TEEJ.201812_65(4).0004
    蔡俊明、李秋蘭(2019)。應用深度學習 YOLOv3 在羽球賽事中提升偵測和辨識選手精確度之研究。國教新知,66(1),51-64。https://doi.org/10.6701/TEEJ.201906_66(1).0004
    蔡琪揚、李逸驊、相子元(2019)。加速規是否能判斷籃球之運動強度?。體育學報,52(3),319-328。https://doi.org/10.6222/pej.201909_52(3).0004
    蔡保田(1987)。教育研究方法論。中國教育學會。師大書苑。
    廖立同、相子元(2009)。身體不同位置加速度分析跑步機跑步身體活動量之研究。華人運動生物力學期刊,1(1),32-38。
    國立編譯館(2000)。教育大辭書。台北市:文景。
    戴貫文(2018)。數據與影像分析在臺灣大專男子籃球比賽之應用。臺大體育學報,第35輯,21-28。https://doi.org/10.6569/NTUJPE.201809_(35).0003
    謝兆騰、鍾寶弘(2016)。以智慧感應籃球比較罰球入籃角度與出手速度之研究。華人運動生物力學期刊,13(1),27-32。https://doi.org/10.3966/207332672016061301004
    簡宗宏(2019)。基於深度學習之新式車牌影像辨識系統(未出版碩士論文)。中原大學,桃園市。
    蘇志文、黃家耀、張開國、葉祖宏、孔垂昌、黃明正、溫基信(2020)。基於空拍影像之人車軌跡抽取技術。運輸計劃季刊,49(3),235-257。
    Aroganam, G., Manivannan, N., & Harrison, D. (2019). Review on wearable technology sensors used in consumer sport applications. Sensors (Basel), 19(9). doi: 10.3390/ s1909198
    Csapo, P., & Raab, M. (2014). "Hand down, man down." Analysis of defensive adjustments in response to the hot hand in basketball using novel defense metrics. PLoS One, 9(12), 1-25. https://doi.org/10.1371/journal.pone.0114184
    Chen, L. H., Chang, H. W., Hsiao, H. A. (2017). Player Trajectory Reconstruction from Broadcast Basketball Video. Proceedings of the 2nd International Conference on Biomedical Signal and Image Processing, 72–76.
    Chen, H. T., Tien, M. C., Chen, Y. W., Tsai, W. J., & Lee, S. Y. (2009). Physics-based ball tracking and 3D trajectory reconstruction with applications to shooting location estimation in basketball video. Journal of Visual Communication and Image Representation, 20(3), 204-216. https://doi.org/10.1016/j.jvcir.2008.11.008
    Chen, H. T., Chou, C. L., Fu, T. S., Lee, S. Y., & Lin , B-S. (2012). Recognizing tactic patterns in broadcast basketball video using player trajectory. Journal of Visual Communication and Image Representation, 23(6), 932-947. https://doi.org/10.1016/j.jvcir.2012.06.003
    Elliott, B. (1992). A kinematic comparison of the male and female two-point and three-point jump shots in basketball. Australian Journal of Science and Medicine in Sport, 24(4), 111-117.
    Eston, R. G., Rowlands, A. V., & Ingledew, D. K. (1998) Validity of heart rate, pedometry, and accelerometry for predicting the energy cost of children’s activities. Journal of Applied Physiology, 84, 362-371.
    FIBA(2020). FIBA 2020 Official Basketball Rules. Retrieved from http://www.fiba.basketball/documents
    JINGLE (2020) STRIKE 2.0 棒球科學訓練系統-預購及軟體訂閱方案。取自 https://tw.shop.jingletek.com/products/strike-2-0-package-set
    Miller, S., & Bartlett, R. M. (1996). The relationship between basketball shooting kinematics, distance and playing position. Journal of Sports Science, 14, 243-253. https://doi.org/10.1080/02640419608727708
    Nunome, H., Doyo, W., Sakurai, S., Ikegmai, Y., & Yabe, K. (2002). A kinematic study of the upper-limb motion of wheelchair basketball shooting in tetraplegic adults. Journal of Rehabilitation Research and Development, 39, 63–71.
    NBAstuffer (n.d.)SportVu Data. Retrieved from https://www.nbastuffer.com/about-nbastuffer/
    Okazaki, V. H., Rodacki, A. L., & Satern, M. N. (2015). A review on the basketball jump shot. Sports Biomech, 14(2), 190-205. https://doi.org/10.1080/14763141.2015.1052541
    R. C. Shah & R. Romijnders. (2016). Applying Deep Learning to Basketball Trajectories. KDD 2016, Large Scale Sports Analytic Workshop.
    Vanhelst, J., Theunynck, D., Gottrand, F., & Béghin, L. (2010). Reliability of the RT3 accelerometer for measurement of physical activity in adolescents. Journal of Sports Sciences, 28(4), 375-379. https://doi.org/10.1080/02640410903502790
    Wen, P. C., Cheng, W. C., Wang, Y-S., Chu, H. K., Tang, N. C., & Liao, H. Y. M. (2016). Court Reconstruction for Camera Calibration in Broadcast Basketball Videos. IEEE Transactions on Visualization and Computer Graphics, 22(5), 1517-1526. https://doi.org/10.1109/TVCG.2015.2440236
    Yoon. Y, Hwang. H., Choi. Y, Joo. M, Oh. H., Park. I., Lee. K., Hwang. J. (2019). Analyzing basketball movements and pass relationships using realtime object tracking techniques based on deep learning. IEEE Access 7, 56564–56576

    下載圖示
    QR CODE