簡易檢索 / 詳目顯示

研究生: 莊瓊瑀
Charity Chuang
論文名稱: 差動式光學希爾伯特偵測法對次波長相位之感測
Sub-wavelengh phase sensing by differential optical hilbert detection method
指導教授: 郭文娟
Kuo, Wen-Chuan
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 63
中文關鍵詞: 希爾伯特偵測法相位感測相位量測相位解析干涉儀
英文關鍵詞: Optical Hilbert, phase detection method, phase sensing, PC-OCT
論文種類: 學術論文
相關次數: 點閱:170下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    光學同調斷層掃描術(OCT)是一種利用低同調干涉的原理產生非接觸式且高速斷層影像成像之重要技術,而相位解析光學同調斷層掃瞄術(Phase-Resolved OCT)結合了傳統光學同調斷層掃描術的優點,使斷層影像可呈現奈米尺度的微小相位差異,這是傳統OCT運用取得強度值所無法測得的。
    本研究旨在探討運用快速光學延遲掃瞄線;RSOD搭配馬赫-詹德干涉儀(Mach-Zehnder Interferometer)與平衡式偵測之光路架構量測相位,來達成相位解析光學同調斷層掃瞄之架構,並提出差動式光學希爾伯特偵測法(Differential Optical Hilbert Detection Method)取得受測樣品的絕對相位資訊,也針對光學希爾伯特偵測法與差動式光學希爾伯特偵測法兩種取得相位資訊的方法來比較並探討。
    關鍵字:相位感測、希爾伯特偵測法。

    Abstract

    Optical coherence tomography (OCT), based on low coherence interferometry, is a powerful tool that can support non-contact and high-speed tomographic imaging in transparent and turbid specimens. Phase-Resolved OCT, combines the advantages of OCT with additional image contrasts obtained by using phase sensitive detection techniques to detect longitudinal displacement with nanometer sensitivity; where these small optical path differences are invisible in conventional intensity-based OCT images.
    This study presents a phase resolved OCT system by incorporating the rapid-scanning optical delay line (RSOD) and the balanced detection configuration into a Mach-Zehnder interferometer. A differential optical Hilbert detection method was also proposed to support effort to the improvement of measurement sensitivity. The performance of phase measurement capability using different configurations (i.e. optical Hilbert and differential optical Hilbert method) was also compared and analyzed.

    目 錄 目 錄 I 圖目錄 III 摘 要 V 第一章 緒論 1 第一節 光學同調斷層掃瞄術(OCT)的相關發展與應用 1 第二節 功能性光學同調斷層掃瞄術(FUNCTIONAL OCT )的相關發展與應用 1 第三節 相位解析干涉儀之文獻回顧 2 第四節 動機與目的 5 第五節 論文架構 8 第二章 理論背景與原理 9 第一節 運算法 10 一、希爾伯特偵測法(Hilbert Transform) 10 二、光學希爾伯特偵測法(Optical Hilbert;OH) 12 三、差動光學希爾伯特偵測法(Differential Optical Hilbert;DOH) 13 第二節 架構原理 15 2.2.1干涉儀原理 15 2.2.1.1麥克森干涉儀(Michelson Interferometry) 16 2.2.1.2馬赫-漢茲干涉儀(Mach-Zehnder Interferometry) 17 2.2.1.3麥克森干涉儀(Michelson Interferometry)與馬赫-漢茲干涉儀(Mach-Zehnder Interferometry)之比較 17 2.2.2平衡式偵測器(BALANCED DETCTION;BD)原理 18 2.2.3高通濾波器(HIGH PASS FILTER;HPF) 20 2.2.4對數運算放大器原理 21 2.2.4.1 前言 21 2.2.4.2 原理 21 2.2.5相位解析光學同調斷層掃瞄術(PHASE-RESOLVED OCT);PC-OCT)架構 24 一、實驗架構架設使用工具與儀器介紹 24 1. CCD影像感測元件 24 2.光功率計(PowerMeter) 24 二、實驗架構之光源 24 三、實驗架構介紹 26 第三章 實驗結果與討論 32 第一節 對數放大器電路測試 34 3.1.1軟體模擬BandPass Filter (BPS) ,確認訊號的範圍 35 3.1.2 對數運算電路製作 35 第二節 樣品端鏡子放置最佳化 40 3.2.1 樣品端鏡子放置最佳化改善前 40 3.2.2 樣品端鏡子放置最佳化改善後 41 3.2.3 放置偏振片改善調制頻率為零之訊號 42 第三節 穩定度 44 3.3.1 長時間穩定度 44 3.3.2 短時間穩定度 46 3.3.3 演算法流程 47 第四節 動態範圍 48 3.4.1 (A) 模擬OH偵測法之動態範圍 48 (B) 模擬DOH偵測法之動態範圍 48 3.4.2 樣品端做鏡子放置最佳化改善後之OH動態範圍[蓋黑箱] 49 3.4.3 用PZT推動之OH動態範圍 [蓋黑箱+壓克力] 50 3.4.4 用PZT推動之OH動態範圍 [蓋黑箱+壓克力+程式數據後處理] 51 3.4.5 樣品端做鏡子放置最佳化改善後之DOH動態範圍[蓋黑箱] 54 3.4.6 用PZT推動之DOH動態範圍 [蓋黑箱+壓克力] 55 3.4.7 用PZT推動DOH之動態範圍 [蓋黑箱+壓克力+程式數據後處理]56 第五節 樣品 59 第六節 討論 61 第四章 總結 62 附錄 參考文獻 63

    [01] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliaf ito, Science 254, 1178 (1991).
    [02] J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, and M. V. Sivak, IEEE J. Sel. Top. Quantum Electron. 2, 1017 (1996).
    [03] M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, Opt. Lett. 27, 1415 (2002).
    [04] S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, Opt. Lett. 22, 340 (1997).
    [05] J. A. Izatt, M. D. Kulkami, S. Yazdanfar, J. K. Barton, and A. J. Welch, Opt. Lett. 22, 1439 (1997).
    [06] Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, “Optical Doppler Tomography,” IEEE Journal of Selected Topics in Quantum Electronics 5, 1134-1142, 1999.
    [07] G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039, 1997.
    [08] C. Yang, A. Wax, M. S. Hahn, K. Badizadegan, R. R.Dasari, and M. S. Feld, Opt. Lett. 26, 1271 (2001)
    [09] M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto, ”Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903-908, 1992.
    [10] C. K. Hitzenbergr, and A. F. Fercher, Opt. Lett. 24 , 622-644(1999).
    [11] C. G. Rylander, D. P. Dave, T. Akkin, T. E. Milner, K. R. Diller, and A. J. Welch, Opt. Lett 29, 1509-15119(2004)
    [12] T. A. C. Joo, B. Cense, B. H. Park, and J. F. de Boer,Opt.Lett.30,2131-2133(2005).
    [13] A. M. Rollins and J. A. Izatt, Opt. Lett. 24, 1484 (1999).
    [14] Y. H. Zhao, Z. P. Chen, Z. H. Ding, H. W. Ren, and J. S. Nelson, Opt. Lett. 27, 98 (2002).
    [15] J. A. Izatt, M. D. Kulkami, S. Yazdanfar, J. K. Barton, and A. J. Welch, Opt. Lett. 22, 1439 (1997).
    [16] U. Morgner, W. Drexler, X. D. Kartner, C. Piltris, E. P. Ippen, and J. G. Fujimoto, Opt. Lett. 25, 111–113 (2000).
    [17] 相 位 凸 顯 成 像 的 探 討 Investigation of Phase-Contrast Imaging,中央大學(2005)
    [18]C. K. Hitzenberger, and A. F. Fercher, "Differential phase contrast in optical coherence tomography," Opt. Lett. 24, 622–644 (1999).
    [19]C. G. Rylander, D. P. Davé, T. Akkin, T. E. Milner, K. R. Diller, and A. J. Welch, "Quantitative phase-contrast imaging of cells with phase-sensitive optical coherence microscopy," Opt. Lett. 29, 1509-1511 (2004).
    [20]T. A. C. Joo, B. Cense, B. H. Park, and J. F. de Boer, "Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging," Opt. Lett. 30, 2131-2133 (2005).
    [21]M. Sticker, C. K. Hitzenberger, R. Leitgeb, and A. F. Fercher, "Quantitative differential phase measurement and imaging in transparent and turbid media by optical coherence tomography," Opt. Lett. 26, 518-520 (2001).
    [22]L.V. Ahlfors, Complex Analysis, McGraw-Hill, New York, 1979
    [23]頻域光學延遲線於光學同調斷層顯像系統之研究,黃文竑(2007)
    [24] T. Waite, Proc. IEEE, vol. 54, p. 334, 1966.
    [25] G. L. Abbas, V. W. S. Chan, and T. K. Yee, "Local-oscillator excess-noise suppression for homodyne and heterodyne detection," Optics Letters, vol. 8, pp. 419-421, 1983.
    [26] Idem, IEEE J. Lightwave Technol., vol. 3, p. 1110, 1985.
    [27] A. M. Rollins and J. A. Izatt, "Optimal interferometer designs for optical coherence tomography," Optics Letters, vol. 24, pp. 1484-1486, 1999.
    [28] A. G. Podoleanu, "Unbalanced versus balanced operation in an optical coherence tomography system," Applied Optics, vol. 39, pp. 173-182, 2000.
    [29] H. Hodara, Proc. IEEE, vol. 53, p. 696, 1965.

    [30] W. V. Sorin and D. M. Baney, "A simple intensity noise reduction technique for optical low-coherence reflectometry," Photonics Technology Letters, IEEE, vol. 4, pp. 1404-1406, 1992.
    [31] K. Takada, "Noise in optical low-coherence reflectometry," IEEE Journal of Quantum Electronics, vol. 34, pp. 1098-1108, 1998.
    [32] L. P. Sanz, High-speed optical delay line for optical coherence tomography. Denmark: Technical University of Denmark, March 2004.
    [33] A. F. Fercher, J. Biomed. Opt., vol. 1, pp. 157-173, 1996.
    [34] Electronic Devices,Sixth Edition, Thomas L. Floyd
    [35] M. Sticker, M. Pircher, E. Götzinger, H. Sattmann, A. F. Fercher, and C. K. Hitzenberger, Opt. Lett. 27, 1126-1128 (2002).
    [36]D. P. Dav´e, and T. E. Milner, Opt. Lett. 25, 227–279 (2000).
    [37]Low Cost, DC to 500 MHz, 92 dB Logarithmic Amplifier,Analog Devices IC 8307 datasheet.
    [38] Andrei V. Zvyagin, Elwyn D. J. Smith, and David D. Sampson, Opt. Soc. Am. Vol. 20 ,333-341 (2003).

    無法下載圖示 本全文未授權公開
    QR CODE