簡易檢索 / 詳目顯示

研究生: 張映晨
Chang, Ying-Chen
論文名稱: 19GHz低雜訊放大器與鏡像抑制混頻器設計
Design of 19GHz Low Noise Amplifier and Image Rejection Mixer
指導教授: 蔡政翰
Tsai, Jeng-Han
口試委員: 蔡政翰
Tsai, Jeng-Han
林文傑
Lin, Wen-Jie
鍾杰穎
Zhong, Jie-Ying
口試日期: 2024/07/23
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 110
中文關鍵詞: 低雜訊放大器固定功率之雜訊與阻抗共匹配技術變壓器二極體靜放電路徑鏡像抑制混頻器鏡像拒斥比
英文關鍵詞: Low Noise Amplifier (LNA), power-constrained simultaneous noise and input matching technique, transformer, Diode static discharge path, Image Rejection Mixer (IR Mixer), Image Rejection Ratio (IRR)
DOI URL: http://doi.org/10.6345/NTNU202401472
論文種類: 學術論文
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要 i ABSTRACT iii 誌 謝 v 圖 目 錄 viii 表 目 錄 xii 第一章 緒論 1 1.1 背景與動機 1 1.2 文獻探討 2 1.2.1 低雜訊放大器 2 1.2.2 鏡像抑制降頻器 4 1.3 論文貢獻 6 1.4 論文架構 6 第二章 低雜訊放大器設計 7 2.1 簡介 7 2.2 低雜訊放大器之架構 8 2.2.1 限制功率之雜訊與阻抗共匹配 8 2.2.2 中和電容技巧 10 2.2.3 二極體靜電防護路徑 12 2.3 低雜訊放大器之設計參數 12 2.3.1 散射參數(S-parameters) 13 2.3.2 雜訊指數(Noise Figure, NF) 14 2.3.3 1-dB壓縮點(P1dB) 14 2.3.4 穩定度(stability, K-factor) 15 2.4 低雜訊放大器設計 15 2.4.1 主電路電晶體偏壓分析與選擇 15 2.4.2 電晶體尺寸分析與選擇 17 2.4.3 匹配網路設計 20 2.4.4 旁路電容設計 28 2.5 19GHz低雜訊放大器之模擬結果 29 2.6 19GHz低雜訊放大器之量測結果 33 2.7 結果與討論 40 2.7.1 量測S參數之頻偏 40 2.7.2 量測之雜訊架設 41 2.8 總結 44 第三章 鏡像抑制降頻器設計 46 3.1 簡介 46 3.2 混頻器原理與種類 47 3.2.1 混頻器原理 47 3.2.2 鏡像抑制混頻器 47 3.3 鏡像抑制混頻器之設計參數 48 3.3.1 轉換增益(Converwsion Gain) 48 3.3.2 鏡像抑制度(Image Rejection Ratio, IRR) 48 3.3.3 轉換增益與LO驅動功率關係 48 3.3.4 線性度(Linearity) 49 3.3.5 隔離度(Isolation) 49 3.4 鏡像抑制降頻器設計 49 3.4.1 電晶體尺寸與偏壓分析及選擇 50 3.4.2 RF端匹配網路設計 59 3.4.3 RF端Marchand Balun設計 61 3.4.4 LO端Marchand Balun設計 63 3.4.5 RF端Wilkinson Power Divider設計 66 3.4.6 LO端Coupler設計 69 3.4.7 LO端四相位匹配網路 72 3.4.8 IF端二階城牆式多相位濾波器(PPF)設計 79 3.5 19GHz鏡像抑制降頻器模擬結果 84 3.6 19GHz鏡像抑制降頻器量測結果 91 3.7 結果與討論 98 3.8 總結 102 第四章 結論 104 參 考 文 獻 105 自  傳 110

    [1] S. Jamil, M. Usman, H. Atiq and R. Ramzan, "28-32 GHz Wideband LNA for 5G Applications," 2021 1st International Conference on Microwave, Antennas & Circuits (ICMAC), Islamabad, Pakistan, 2021, pp. 1-4.
    [2] P. Qin and Q. Xue, "Compact Wideband LNA With Gain and Input Matching Bandwidth Extensions by Transformer," in IEEE Microwave and Wireless Components Letters, vol. 27, no. 7, pp. 657-659, July 2017.
    [3] L. Rao, H. Feng and N. Zhang, "A Full Monolithic 26GHz LNA with Special Transmission Line and Transformer for 5G Applications in 55nm and 65nm CMOS," 2020 IEEE 3rd International Conference on Electronics Technology (ICET), Chengdu, China, 2020, pp. 257-261.
    [4] Y. Ding, S. Vehring and G. Boeck, "Design and Implementation of an Ultracompact LNA With 23.5-dB Gain and 3.3-dB Noise Figure," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 6, pp. 406-408, June 2019.
    [5] N. Sebastian, C. Subbareddy and I. Raja, "A 3.55 dB NF Ultra-Compact Noise-Optimized LNA for 5G mm-Wave Bands in 65nm CMOS," 2021 34th International Conference on VLSI Design and 2021 20th International Conference on Embedded Systems (VLSID), Guwahati, India, 2021, pp. 71-75.
    [6] S. N. Ali, M. Aminul Hoque, S. Gopal, M. Chahardori, M. A. Mokri and D. Heo, "A Continually-Stepped Variable-Gain LNA in 65-nm CMOS Enabled by a Tunable-Transformer for mm-Wave 5G Communications," 2019 IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2019, pp. 926-929.
    [7] X. Huang, H. Jia, W. Deng, Z. Wang and B. Chi, "28 GHz Compact LNAs with 1.9 dB NF Using Folded Three-Coil Transformer and Dual-Feedforward Techniques in 65nm CMOS," 2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Denver, CO, USA, 2022, pp. 223-226.
    [8] J. Zhang, D. Zhao, X. You,“A 20-GHz 1.9-mW LNA Using gm-Boost and Current-Reuse Techniques in 65-nm CMOS for Satellite Communications,”IEEE J. Solid-State Circuits, vol. 55, no. 10, pp. 2714–2723, October 2020.
    [9] M. -H. Tsai, S. S. H. Hsu, F. -L. Hsueh and C. -P. Jou, "ESD-Protected K-Band Low-Noise Amplifiers Using RF Junction Varactors in 65-nm CMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 12, pp. 3455-3462, Dec. 2011.
    [10] M. -H. Tsai, S. S. H. Hsu, F. -L. Hsueh, C. -P. Jou and T. -J. Yeh, "A 17.5–26 GHz Low-Noise Amplifier With Over 8 kV ESD Protection in 65 nm CMOS," in IEEE Microwave and Wireless Components Letters, vol. 22, no. 9, pp. 483-485.
    [11] C. -Y. Lin and M. -L. Fan, "Design of ESD Protection Diodes With Embedded SCR for Differential LNA in a 65-nm CMOS Process," in IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 11, pp. 2723-2732, Nov. 2014.
    [12] J. Zhang and D. Zhao, "A 20-GHz Ultra-Low-Power LNA Using gm-Boosted and Current-Reuse Techniques in 65-nm CMOS for Satellite Communication Terminals," 2019 IEEE Asian Solid-State Circuits Conference (A-SSCC), Macau, Macao, 2019, pp. 81-82.
    [13] K. -C. Chang, Y. Wang and H. Wang, "Design of a 1.8-mW K-Band Low Noise Amplifier with 19.3-dB Gain and 3.3-dB Noise Figure in 90-nm CMOS," 2021 IEEE Asia-Pacific Microwave Conference (APMC), Brisbane, Australia, 2021, pp. 4-6.
    [14] P. Kumar, P. Saurav, S. Jaiswal, P. Jalan and G. Mehra, "Temperature stable 65 nm UWB CMOS LNA with 1.5 dB NF for K-Band Applications," 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 2021, pp. 658-662.
    [15] Trung-Kien Nguyen, Chung-Hwan Kim, Gook-Ju Ihm, Moon-Su Yang and Sang-Gug Lee, "CMOS low-noise amplifier design optimization techniques," in IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 5, pp. 1433-1442, May 2004.
    [16] J. Xu, N. Yan, Q. Chen, J. Gao and X. Zeng, "A 3.4dB NF k-band LNA in 65nm CMOS technology," 2013 IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, 2013, pp. 1123-1126.
    [17] H. Duan, M. Zhou, Q. Chen, X. Wu, D. Wang and L. Li, "A K-Band High-Linearity and Low-Noise Down-Conversion Mixer in 65nm CMOS," 2022 7th International Conference on Integrated Circuits and Microsystems (ICICM), Xi'an, China, 2022, pp. 490-494.
    [18] S. Singh and N. Kumar, "Design of Wideband Millimeter Wave Mixer in CMOS 65nm for 5G Wireless," 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, India, 2018, pp. 717-721.
    [19] D. Santhoshi, B. K. Bharti, A. Yadav and K. Kandpal, "Design and Optimization of a Gilbert Cell Down-Conversion Mixer for Improved Linearity, Noise Figure, and Conversion Gain," 2023 10th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Gautam Buddha Nagar, India, 2023, pp. 697-701.
    [20] F. Talay and M. B. Yelten, "Down-Conversion Gilbert Cell Mixer Design for 5G Wireless Communications Systems," 2022 24th International Microwave and Radar Conference (MIKON), Gdansk, Poland, 2022, pp. 1-4.
    [21] J. -H. Chen, C. -C. Kuo, Y. -M. Hsin and H. Wang, "A 15-50 GHz broadband resistive FET ring mixer using 0.18-µm CMOS technology," 2010 IEEE MTT-S International Microwave Symposium, Anaheim, CA, USA, 2010, pp. 784-787.
    [22] S. -H. Weng, C. -H. Shen and H. -Y. Chang, "A wide modulation bandwidth bidirectional CMOS IQ modulator/demodulator for microwave and millimeter-wave gigabit applications," 2012 7th European Microwave Integrated Circuit Conference, Amsterdam, Netherlands, 2012, pp. 8-11.
    [23] K. S. Yeo, J. Yan, B. K. Thangarasu and H. Liu, "Ku-Band Bidirectional Mixer with Directional Control," 2021 9th International Symposium on Next Generation Electronics (ISNE), Changsha, China, 2021, pp. 1-4.
    [24] P. Liu et al., "A 15-27 GHz Low Conversion Loss and High Isolation Resistive Ring Mixer for Direct Conversion Receiver," 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Guangzhou, China, 2019, pp. 1-3.
    [25] Y. -T. Chang and K. -Y. Lin, "A 28-GHz Bidirectional Active Gilbert-Cell Mixer in 90-nm CMOS," in IEEE Microwave and Wireless Components Letters, vol. 31, no. 5, pp. 473-476, May 2021.
    [26] M. Parlak and J. F. Buckwalter, "A Passive I/Q Millimeter-Wave Mixer and Switch in 45-nm CMOS SOI," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 3, pp. 1131-1139, March 2013
    [27] J. -H. Tsai, "Design of 40–108-GHz Low-Power and High-Speed CMOS Up-/Down-Conversion Ring Mixers for Multistandard MMW Radio Applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 3, pp. 670-678, March 2012.
    [28] M. Frounchi and J. D. Cressler, "Dual-Band Millimeter-Wave Quadrature LO Generation With a Common-Centroid Floorplan," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 2, pp. 260-264, Feb. 2020.
    [29] A. Ahmed and G. M. Rebeiz, "A 8–30 GHz Passive Harmonic Rejection Mixer with 8 GHz Instantaneous IF Bandwidth in 45RFSOI," 2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Denver, CO, USA, 2022, pp. 19-22.
    [30] M. -H. Wu, J. -H. Tsai and T. -W. Huang, "Ka-Band Calibration-Free High Image-Rejection Up/Down Mixers With 117% Fractional IF Bandwidth for SATCOM Applications," in IEEE Access, vol. 8, pp. 182133-182145, 2020.
    [31] F. Piri, M. Bassi, N. R. Lacaita, A. Mazzanti and F. Svelto, "A PVT-Tolerant >40-dB IRR, 44% Fractional-Bandwidth Ultra-Wideband mm-Wave Quadrature LO Generator for 5G Networks in 55-nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 53, no. 12, pp. 3576-3586, Dec. 2018.
    [32] Y. Dai, J. Wen and N. Jin, "A 20–55 GHz Broadband Low-Power Down-conversion Mixer Using 65-nm CMOS Technology," 2022 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Harbin, China, 2022, pp. 1-3.
    [33] F. Zhu, K. Wang and K. Wu, “Design considerations for image-rejection enhancement of quadrature mixers”, IEEE Microw. Wireless Compon. Lett., vol. 29, no. 3, pp. 216-218, March 2019
    [34] 王佾雯,19 GHz 單邊帶混頻器與可變增益放大器與設計,國立臺灣師範大學電機工程研究所碩士論文,2022年
    [35] 何泰廷,毫米波寬頻鏡像訊號抑制接收機設計,國立臺灣師範大學電機工程研究所碩士論文,2021年
    [36] 魏庚生,28GHz I/Q調變器與單邊帶混頻器設計,國立臺灣師範大學電機工程研究所碩士論文,2021年
    [37] 黃佳慧,19GHz低雜訊放大器和3.5GHz可變增益放大器設計,國立臺灣師範大學電機工程研究所碩士論文,2022年
    [38] 鄧凱駿,28GHz鏡像訊號抑制接收機設計,國立臺灣師範大學電機工程研究所碩士論文,2021年

    無法下載圖示 電子全文延後公開
    2029/08/01
    QR CODE