研究生: |
陳品蓉 Chen, Pin-Jung |
---|---|
論文名稱: |
改良式黏菌演算法應用於微電網之能源管理系統 Improved Slime Mould Algorithm Applied to Energy Management System in Microgrid |
指導教授: |
陳瑄易
Chen, Syuan-Yi |
口試委員: |
李政道
Lee, Jeng-Dao 談光雄 Tan, Kuang-Hsiung 藍建武 Lan, Chien-Wu 陳瑄易 Chen, Syuan-Yi |
口試日期: | 2024/01/10 |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 130 |
中文關鍵詞: | 基本規則庫控制策略 、全域搜索法控制策略 、黏菌演算法控制策略 、能量管理系統 、微電網 、直流-直流轉換器 |
英文關鍵詞: | Rule-based control strategy, Global search algorithm, Slime mould algorithm, Energy management System, Microgrid, DC-DC converter |
DOI URL: | http://doi.org/10.6345/NTNU202400180 |
論文種類: | 學術論文 |
相關次數: | 點閱:84 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在為智慧家庭發展一整合太陽能發電、市電及儲能系統之微電網能量管理系統(Energy Management System, EMS),透過設計最佳化多能源系統能量管理技術,合理分配不同能源之間的功率流向,同時確保儲能系統進行必要的儲能與釋能,以降低總體用電成本。研究中建構一個包含太陽能、市電和儲能系統的微電網模型,並提出多種控制策略,包括基本規則庫、全域搜索法、黏菌演算法以及本研究所提出的改良式黏菌演算法,該策略將螺旋搜索策略整合至黏菌演算法中,以降低演算法在搜索過程中陷入局部最佳解的機率,同時提高搜索速度。透過本研究提出的控制策略,能夠針對在不同需求功率和儲能電池狀態下,計算出最佳功率分配比例,實現能量管理最佳化。
本研究以個人電腦及Matlab/Simulink發展控制策略,透過個人電腦計算最佳能量分配比例後,輸出控制訊號以對各組直流-直流轉換器進行電壓與電流控制,使各模組輸出功率可被主動式分配,實現最佳化能量管理目標。實驗結果表明,改良式黏菌演算法控制策略能夠有效地最佳化分配能源,以達到降低用電成本的目的。以夏日情境為例,使用全域搜索法控制策略能比基本規則庫控制策略之用電成本改善幅度11.826%;使用黏菌演算法控制策略改善幅度10.210%;而使用改良式黏菌演算法控制策略改善幅度10.945%。由上述說明可知,本研究提出的改良式黏菌演算法能實現理想的微電網能量管理目標。
The purpose of this study is to develop an Energy Management System (EMS) for smart homes that integrates solar power generation, utility power, and energy storage systems into a microgrid. By designing of optimized multi-energy system energy management techniques, the objective is to rationally allocate power flows among different energy sources while ensuring necessary energy storage and discharge, ultimately reducing the overall electricity costs. In this study, a microgrid model with multiple energy systems was established, including solar power generation, utility power, and energy storage systems. Several control strategies were proposed, including Rule-Based (RB), Global Search Algorithm (GSA), Slime Mould Algorithm (SMA) and Improved Slime Mould Algorithm (ISMA) introduced in this study. This strategy integrates a spiral search strategy into the slime mould algorithm to reduce the likelihood of the algorithm getting stuck in local optimal solutions during the search process. Simultaneously, it shortens the required search time, addressing the issue of excessive search time in the global search algorithm. Through the control strategy proposed in this study, optimal power distribution ratios can be calculated for different power demand scenarios and energy storage battery states, achieving energy management optimization.
This study developed control strategies using a personal computer and Matlab/Simulink. After calculating the optimal energy distribution ratios on the personal computer, commands for controlling voltage and current were generated to regulate each group of DC-DC converters. This enables the active allocation of power output from each module, achieving the goal of optimized energy management. The experimental results of the study indicate that the ISMA control strategy effectively optimizes energy distribution to achieve the goal of reducing electricity costs. Specifically, in the case of a summer scenario, the use of the GSA control strategy improves electricity costs by 11.826% compared to the RB control strategy. The SMA control strategy improves costs by 10.210%, and the ISMA control strategy achieves an improvement of 10.945%. Overall, the results suggest that the ISMA proposed in this study approaches the results obtained by the GSA more closely.
[1] D. H. Vu, K. M. Muttaqi, and D. Sutanto, “An integrated energy management approach for the economic operation of industrial microgrids under uncertainty of renewable energy,” IEEE Transactions on Industry Applications, vol. 56, no. 2, pp. 1062-1073, 2020.
[2] G. Shahgholian, “A brief review on microgrids: Operation, applications, modeling, and control,” International Transactions on Electrical Energy Systems, vol. 31, no. 6, pp. e12885, 2021.
[3] I. E. A. (IEA), “Electricity Market Report 2023.”
[4] P. S. Kumar, R. Chandrasena, V. Ramu, G. Srinivas, and K. V. S. M. Babu, “Energy management system for small scale hybrid wind solar battery based microgrid,” IEEE access, vol. 8, pp. 8336-8345, 2020.
[5] M. H. K. Tushar, A. W. Zeineddine, and C. Assi, “Demand-side management by regulating charging and discharging of the EV, ESS, and utilizing renewable energy,” IEEE Transactions on Industrial Informatics, vol. 14, no. 1, pp. 117-126, 2017.
[6] G. Magdy, E. A. Mohamed, G. Shabib, A. A. Elbaset, and Y. Mitani, “Microgrid dynamic security considering high penetration of renewable energy,” Protection and Control of Modern Power Systems, vol. 3, no. 1, pp. 1-11, 2018.
[7] L. Meng, E. R. Sanseverino, A. Luna, T. Dragicevic, J. C. Vasquez, and J. M. Guerrero, “Microgrid supervisory controllers and energy management systems: A literature review,” Renewable and Sustainable Energy Reviews, vol. 60, pp. 1263-1273, 2016.
[8] H. Shareef, M. S. Ahmed, A. Mohamed, and E. Al Hassan, “Review on home energy management system considering demand responses, smart technologies, and intelligent controllers,” Ieee Access, vol. 6, pp. 24498-24509, 2018.
[9] C. A. Cortes, S. F. Contreras, and M. Shahidehpour, “Microgrid topology planning for enhancing the reliability of active distribution networks,” IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 6369-6377, 2017.
[10] A. Hirsch, Y. Parag, and J. Guerrero, “Microgrids: A review of technologies, key drivers, and outstanding issues,” Renewable and sustainable Energy reviews, vol. 90, pp. 402-411, 2018.
[11] Y. Wang, Y. Huang, Y. Wang, M. Zeng, F. Li, Y. Wang, and Y. Zhang, “Energy management of smart micro-grid with response loads and distributed generation considering demand response,” Journal of cleaner production, vol. 197, pp. 1069-1083, 2018.
[12] B. Zhou, J. Zou, C. Y. Chung, H. Wang, N. Liu, N. Voropai, and D. Xu, “Multi-microgrid energy management systems: Architecture, communication, and scheduling strategies,” Journal of Modern Power Systems and Clean Energy, vol. 9, no. 3, pp. 463-476, 2021.
[13] M. A. Hossain, H. R. Pota, W. Issa, and M. J. Hossain, “Overview of AC microgrid controls with inverter-interfaced generations,” Energies, vol. 10, no. 9, pp. 1300, 2017.
[14] F. Yang, X. Feng, and Z. Li, “Advanced microgrid energy management system for future sustainable and resilient power grid,” IEEE Transactions on Industry Applications, vol. 55, no. 6, pp. 7251-7260, 2019.
[15] M. Roslan, M. Hannan, P. J. Ker, and M. Uddin, “Microgrid control methods toward achieving sustainable energy management,” Applied Energy, vol. 240, pp. 583-607, 2019.
[16] M. A. Hossain, H. R. Pota, S. Squartini, F. Zaman, and K. M. Muttaqi, “Energy management of community microgrids considering degradation cost of battery,” Journal of Energy Storage, vol. 22, pp. 257-269, 2019.
[17] N. Sasidharan, and J. G. Singh, “A resilient DC community grid with real time ancillary services management,” Sustainable cities and society, vol. 28, pp. 367-386, 2017.
[18] A. C. Luna, N. L. Diaz, M. Graells, J. C. Vasquez, and J. M. Guerrero, “Mixed-integer-linear-programming-based energy management system for hybrid PV-wind-battery microgrids: Modeling, design, and experimental verification,” IEEE Transactions on Power Electronics, vol. 32, no. 4, pp. 2769-2783, 2016.
[19] B. Jeddi, Y. Mishra, and G. Ledwich, “Dynamic programming based home energy management unit incorporating PVs and batteries,” in 2017 IEEE Power & Energy Society General Meeting, 2017, pp. 1-5.
[20] H. Chen, S. Jiao, A. A. Heidari, M. Wang, X. Chen, and X. Zhao, “An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models,” Energy Conversion and Management, vol. 195, pp. 927-942, 2019.
[21] H. T. Dinh, J. Yun, D. M. Kim, K.-H. Lee, and D. Kim, “A home energy management system with renewable energy and energy storage utilizing main grid and electricity selling,” IEEE access, vol. 8, pp. 49436-49450, 2020.
[22] W. Zhang, A. Maleki, M. A. Rosen, and J. Liu, “Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage,” Energy, vol. 163, pp. 191-207, 2018.
[23] S. Li, H. Chen, M. Wang, A. A. Heidari, and S. Mirjalili, “Slime mould algorithm: A new method for stochastic optimization,” Future Generation Computer Systems, vol. 111, pp. 300-323, 2020.
[24] R. E. Precup, R. C. David, R. C. Roman, E. M. Petriu, and A. I. Szedlak-Stinean, “Slime mould algorithm-based tuning of cost-effective fuzzy controllers for servo systems,” International Journal of Computational Intelligence Systems, vol. 14, no. 1, pp. 1042-1052, 2021.
[25] C. Fu, L. Zhang, and W. Dong, “Research and Application of MPPT Control Strategy Based on Improved Slime Mold Algorithm in Shaded Conditions,” Electronics, vol. 11, no. 14, pp. 2122, 2022.
[26] T. Singh, “Chaotic slime mould algorithm for economic load dispatch problems,” Applied Intelligence, vol. 52, no. 13, pp. 15325-15344, 2022.
[27] Z. M. Gao, J. Zhao, Y. Yang, and X. J. Tian, “The hybrid grey wolf optimization-slime mould algorithm,” in Journal of Physics: Conference Series, 2020, pp. 012034.
[28] D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Cañizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, and R. Palma-Behnke, “Trends in microgrid control,” IEEE Transactions on smart grid, vol. 5, no. 4, pp. 1905-1919, 2014.
[29] Y. Han, G. Zhang, Q. Li, Z. You, W. Chen, and H. Liu, “Hierarchical energy management for PV/hydrogen/battery island DC microgrid,” International Journal of Hydrogen Energy, vol. 44, no. 11, pp. 5507-5516, 2019.
[30] D. W. Hart, and D. W. Hart, Power electronics: McGraw-Hill New York, 2011.
[31] M. H. Rashid, Power electronics handbook: Butterworth-heinemann, 2017.
[32] 羅祥瑜,基於強化式學習之複合電力電動機車能量管理系統,國立臺灣師範大學電機工程學系碩士論文,台北市,2022。
[33] J. G. Kassakian, D. J. Perreault, G. C. Verghese, and M. F. Schlecht, Principles of power electronics: Cambridge University Press, 2023.
[34] E. Banguero, A. Correcher, Á. Pérez-Navarro, E. García, and A. Aristizabal, “Diagnosis of a battery energy storage system based on principal component analysis,” Renewable Energy, vol. 146, pp. 2438-2449, 2020.
[35] A. Rufer, Energy storage: systems and components: CRC Press, 2017.
[36] F. Diaz-Gonzalez, D. Heredero-Peris, M. Pages-Gimenez, E. Prieto-Araujo, and A. Sumper, “A comparison of power conversion systems for modular battery-based energy storage systems,” IEEE access, vol. 8, pp. 29557-29574, 2020.
[37] Y. Wang, J. Tian, Z. Sun, L. Wang, R. Xu, M. Li, and Z. Chen, “A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems,” Renewable and Sustainable Energy Reviews, vol. 131, pp. 110015, 2020.
[38] H. Hinz, “Comparison of lithium-ion battery models for simulating storage systems in distributed power generation,” Inventions, vol. 4, no. 3, pp. 41, 2019.
[39] P. Shen, M. Ouyang, L. Lu, J. Li, and X. Feng, “The co-estimation of state of charge, state of health, and state of function for lithium-ion batteries in electric vehicles,” IEEE Transactions on Vehicular Technology, vol. 67, no. 1, pp. 92-103, 2017.
[40] W. De Soto, S. A. Klein, and W. A. Beckman, “Improvement and validation of a model for photovoltaic array performance,” Solar energy, vol. 80, no. 1, pp. 78-88, 2006.
[41] G. K. Singh, “Solar power generation by PV (photovoltaic) technology: A review,” Energy, vol. 53, pp. 1-13, 2013.
[42] T. Ikegami, T. Maezono, F. Nakanishi, Y. Yamagata, and K. Ebihara, “Estimation of equivalent circuit parameters of PV module and its application to optimal operation of PV system,” Solar Energy Materials and Solar Cells, vol. 67, no. 1-4, pp. 389-395, 2001.
[43] F. Corti, A. Laudani, G. M. Lozito, and A. Reatti, “Computationally efficient modeling of DC-DC converters for PV applications,” Energies, vol. 13, no. 19, pp. 5100, 2020.
[44] M. Obi, and R. Bass, “Trends and challenges of grid-connected photovoltaic systems–A review,” Renewable and Sustainable Energy Reviews, vol. 58, pp. 1082-1094, 2016.
[45] M. Egido, and E. Lorenzo, “The sizing of stand alone PV-system: A review and a proposed new method,” Solar Energy Materials and Solar Cells, vol. 26, no. 1-2, pp. 51-69, 1992.
[46] A. Mohammed, J. Pasupuleti, T. Khatib, and W. Elmenreich, “A review of process and operational system control of hybrid photovoltaic/diesel generator systems,” Renewable and Sustainable Energy Reviews, vol. 44, pp. 436-446, 2015.
[47] "台灣電力公司電價表," https://www.taipower.com.tw/upload/238/2023103114140572148.pdf.
[48] "行政院112年度再生能源電能躉購費率," https://gazette.nat.gov.tw/EG_FileManager/eguploadpub/eg029004/ch04/type1/gov31/num6/images/Eg01.pdf.
[49] A. Bouakkaz, A. J. G. Mena, S. Haddad, and M. L. Ferrari, “Efficient energy scheduling considering cost reduction and energy saving in hybrid energy system with energy storage,” Journal of Energy Storage, vol. 33, pp. 101887, 2021.
[50] "台塑新智能," https://www.formosabattery.com.tw/portfolio-item/%e9%8b%b0%e9%90%b5%e9%9b%bb%e6%b1%a0%e7%b5%84/.
[51] P. C. Krause, O. Wasynczuk, S. D. Sudhoff, and S. Pekarek, Analysis of electric machinery and drive systems: Wiley Online Library, 2002.
[52] F. Z. Peng, and J.-S. Lai, “Generalized instantaneous reactive power theory for three-phase power systems,” IEEE Transactions on Instrumentation and Measurement, vol. 45, no. 1, pp. 293-297, 1996.
[53] R. Teodorescu, M. Liserre, and P. Rodriguez, Grid Converters for Photovoltaic and Wind Power Systems: John Wiley & Sons, 2011.
[54] 賴煜凱,應用於三相不平衡負載電流補償之智慧型太陽光電發電系統,國立中央大學電機工程學系碩士論文,桃園縣,2018。
[55] P. Xie, J. M. Guerrero, S. Tan, N. Bazmohammadi, J. C. Vasquez, M. Mehrzadi, and Y. Al-Turki, “Optimization-based power and energy management system in shipboard microgrid: A review,” IEEE systems journal, vol. 16, no. 1, pp. 578-590, 2021.
[56] S. Wu, A. A. Heidari, S. Zhang, F. Kuang, and H. Chen, “Gaussian bare-bone slime mould algorithm: performance optimization and case studies on truss structures,” Artificial Intelligence Review, pp. 1-37, 2023.
[57] M. Li, G. Xu, Y. Fu, T. Zhang, and L. Du, “Improved whale optimization algorithm based on variable spiral position update strategy and adaptive inertia weight,” Journal of Intelligent & Fuzzy Systems, vol. 42, no. 3, pp. 1501-1517, 2022.
[58] "Monitoring of electricity demand," https://demanda.ree.es/visiona/peninsula/demandaqh/total.