研究生: |
徐令潔 Ling-Chieh Hsu |
---|---|
論文名稱: |
利用第一原理探討CO分子吸附於Mn-modified CeO2(111)表面上之氧化反應 CO adsorption on the Mn-modified CeO2(111) surface: A First-Principles study |
指導教授: |
蔡明剛
Tsai, Ming-Kang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | CO吸附 、Mn-dope CeO2(111)表面 、第一原理 、DFT+U計算 |
英文關鍵詞: | CO adsorption, Mn-doped CeO2, First-Principles study, DFT+U |
論文種類: | 學術論文 |
相關次數: | 點閱:239 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們使用自旋極化週期性密度泛函理論來研究CO分子吸附於Mn-doped CeO2(111)表面上之氧化反應,將Mn dope 到CeO2(111)表面,來修飾純CeO2(111)表面的活性、氧空缺的形成和分子吸附於表面的應用與氧化反應機制。在本論文中,我們在密度泛函理論之上並加入Hubbard U term (DFT+U)做計算,研究Mn dope到CeO2(111)表面上的Ce1-xMnxO2和CO吸附的結構。
將錳原子摻雜到表面中,將錳原子取代掉表面中的鈰原子,會導致強烈的結構性扭曲和較小的氧空位形成能。我們計算結果表示,Mn原子的dope有利於形成氧空缺和CO的氧化作用。當我們將Mn原子吸附於CeO2(111)表面上,則會抑制氧空缺的形成,使表面不易形成氧空缺,也不利於CO的氧化反應。將CO吸附於三種不同表面時,只有在純的CeO2(111)表面上會形成CO的物理吸附,而在Ce0.875Mn0.125O2(111)的表面上CO的吸附結會為CO的物理吸附、CO的化學吸附會形成carbonite (CO2–)。CO2的物理吸附,也計算振動頻率來確定這些穩定結構的準確性。接下來的計算加入O2分子於表面形成O原子 ,使表面恢復回Ce0.875Mn0.125O2 (111)表面,可以循環再生利用。另外,我們也計算Bader charge去分析表面上Mn原子與CeO2的氧化狀態。
We use spin-polarized Density Functional Theory with on-sit columbic repulsion (Hubbard U term) as DFT+U to study CO oxidation on the Mn-doped CeO2(111) surface with being denoted as Ce1-xMnxO2. The dopant – Mn is used to increase the surface activity of oxygen vacancy formation, CO absorption, and the subsequent CO oxidation.
Mn substitution in CeO2 results in significant structural distortions and oxygen vacancy formation energy reduction as compared to undoped CeO2 surface The CO oxidation is also facilitated by the presence of Mn dopant. If the Mn is only absorbed on CeO2 surface, the oxygen vacancy formation and the CO oxidation would be both hindered. Only physical absorption was found on the undoped CeO2(111) surface in comparison with CeO2(110) and CeO2(100) surfaces. CO being absroped on Ce0.875Mn0.125O2 (111) would automatically turn to the formation of carbonite (CO2–). Vibrational frequency analysis was carried out to confirm the existence of the stable geometry. The subsequent calculation takes into account the presence of O2 molecule where O2 would be decomposed into two O atoms on surface. The O atom could regenerate the Ce0.875Mn0.125O2 (111) surface in order to continue the next catalytic cycle. The Bader charge analysis is carried to characterize the oxidation state of Mn ions along the catalytic cycle.
(1) Chen, H.-T.; Chang, J.-G. The Journal of Physical Chemistry C 2011, 115, 14745.
(2) Kundakovic, L.; Flytzani-Stephanopoulos, M. Journal of Catalysis 1998, 179, 203.
(3) Liu, W.; Flytzanistephanopoulos, M. Journal of Catalysis 1995, 153, 304.
(4) Patsalas, P.; Logothetidis, S.; Sygellou, L.; Kennou, S. Physical Review B 2003, 68, 035104.
(5) Sugiura, M. Catalysis Surveys from Asia 2003, 7, 77.
(6) Skorodumova, N. V.; Simak, S. I.; Lundqvist, B. I.; Abrikosov, I. A.; Johansson, B. Physical Review Letters 2002, 89, 166601.
(7) Gennard, S.; Corà, F.; Catlow, C. R. A. The Journal of Physical Chemistry B 1999, 103, 10158.
(8) Skorodumova, N. V.; Baudin, M.; Hermansson, K. Physical Review B 2004, 69, 075401.
(9) Nolan, M.; Grigoleit, S.; Sayle, D. C.; Parker, S. C.; Watson, G. W. Surface Science 2005, 576, 217.
(10) Siokou, A.; Nix, R. M. The Journal of Physical Chemistry B 1999, 103, 6984.
(11) Aneggi, E.; Llorca, J.; Boaro, M.; Trovarelli, A. Journal of Catalysis 2005, 234, 88.
(12) Huang, M.; Fabris, S. The Journal of Physical Chemistry C 2008, 112, 8643.
(13) Nolan, M.; Watson, G. W. The Journal of Physical Chemistry B 2006, 110, 16600.
(14) Kresse, G.; Hafner, J. Physical Review B 1993, 47, 558.
(15) Kresse, G.; Hafner, J. Physical Review B 1994, 49, 14251.
(16) Nolan, M. The Journal of Physical Chemistry C 2011, 115, 6671.
(17) Kresse, G.; Furthmüller, J. Computational Materials Science 1996, 6, 15.
(18) Scirè, S.; Minicò, S.; Crisafulli, C.; Satriano, C.; Pistone, A. Applied Catalysis B: Environmental 2003, 40, 43.
(19) Mars, P.; van Krevelen, D. W. Chemical Engineering Science 1954, 3, Supplement 1, 41.
(20) Bunluesin, T.; Gorte, R. J.; Graham, G. W. Applied Catalysis B: Environmental 1997, 14, 105.
(21) Zhang, C.; Michaelides, A.; King, D. A.; Jenkins, S. J. The Journal of Physical Chemistry C 2009, 113, 6411.
(22) Pozdnyakova, O.; Teschner, D.; Wootsch, A.; Kröhnert, J.; Steinhauer, B.; Sauer, H.; Toth, L.; Jentoft, F. C.; Knop-Gericke, A.; Paál, Z.; Schlögl, R. Journal of Catalysis 2006, 237, 1.
(23) Kresse, G.; Furthmüller, J. Physical Review B 1996, 54, 11169.
(24) Perdew, J. P.; Burke, K.; Ernzerhof, M. Physical Review Letters 1996, 77, 3865.
(25) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Physical Review B 1992, 46, 6671.
(26) Perdew, J. P.; Wang, Y. Physical Review B 1992, 45, 13244.
(27) Blöchl, P. E. Physical Review B 1994, 50, 17953.
(28) Monkhorst, H. J.; Pack, J. D. Physical Review B 1976, 13, 5188.
(29) Nolan, M.; Parker, S. C.; Watson, G. W. Surface Science 2005, 595, 223.
(30) Fabris, S.; de Gironcoli, S.; Baroni, S.; Vicario, G.; Balducci, G. Physical Review B 2005, 71, 041102.
(31) Fabris, S.; Vicario, G.; Balducci, G.; de Gironcoli, S.; Baroni, S. The Journal of Physical Chemistry B 2005, 109, 22860.
(32) Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Physical Review B 1998, 57, 1505.
(33) Loschen, C.; Carrasco, J.; Neyman, K. M.; Illas, F. Physical Review B 2007, 75, 035115.
(34) Andersson, D. A.; Simak, S. I.; Johansson, B.; Abrikosov, I. A.; Skorodumova, N. V. Physical Review B 2007, 75, 035109.
(35) Wang, B.; Gu, Y.; Kong, F. The Journal of Physical Chemistry A 1998, 102, 9367.
(36) Lu, X.; Xu, X.; Wang, N.; Zhang, Q. The Journal of Physical Chemistry A 1999, 103, 10969.
(37) Watanabe, S.; Usuda, S.-y.; Kohguchi, H.; Yamasaki, K. The Journal of Physical Chemistry A 2009, 114, 735.
(38) Kümmerle, E. A.; Heger, G. Journal of Solid State Chemistry 1999, 147, 485.
(39) Mills, G.; Jónsson, H.; Schenter, G. K. Surface Science 1995, 324, 305.
(40) Henkelman, G.; Uberuaga, B. P.; Jonsson, H. The Journal of Chemical Physics 2000, 113, 9901.
(41) Yang, Z.; Woo, T. K.; Hermansson, K. Chemical Physics Letters 2004, 396, 384.
(42) Chen, H.-T. The Journal of Physical Chemistry C 2012, 116, 6239.
(43) Chen, H.-T.; Chang, J.-G. The Journal of Chemical Physics 2010, 132, 214702.
(44) Machida, M.; Uto, M.; Kurogi, D.; Kijima, T. Journal of Materials Chemistry 2001, 11, 900.
(45) Yang, Z.; Woo, T. K.; Baudin, M.; Hermansson, K. The Journal of Chemical Physics 2004, 120, 7741.
(46) Li, C.; Sakata, Y.; Arai, T.; Domen, K.; Maruya, K.-i.; Onishi, T. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1989, 85, 929.
(47) Li, C.; Sakata, Y.; Arai, T.; Domen, K.; Maruya, K.-i.; Onishi, T. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1989, 85, 1451.
(48) Herschend, B.; Baudin, M.; Hermansson, K. Chemical Physics 2006, 328, 345.
(49) Nolan, M.; Parker, S. C.; Watson, G. W. Surface Science 2006, 600, 175.
(50) Murugan, B.; Ramaswamy, A. V.; Srinivas, D.; Gopinath, C. S.; Ramaswamy, V. Chemistry of Materials 2005, 17, 3983.
(51) Pérez-Omil, J. A.; Delgado, J. J.; Ouahbi, W.; Hungría, A. B.; Browning, N.; Cauqui, M. A.; Rodríguez-Izquierdo, J. M.; Calvino, J. J. The Journal of Physical Chemistry C 2010, 114, 8981.
(52) http://www.meca.org/cs/root/resources/feature_article