簡易檢索 / 詳目顯示

研究生: 許家榕
Chia-Rung Hsu
論文名稱: 兩棲植物銅錢草 Hydrocotyle verticillata Thunb. 對水陸環境與水位高度變化的適應
Adaptations of an amphibious plant, whorled marsh pennywort (Hydrocotyle verticillata Thunb.), to terrestrial and aquatic environments and changes in water level.
指導教授: 林登秋
Lin, Teng-Chiu
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 45
中文關鍵詞: 銅錢草兩棲植物氣孔光合作用葉綠素螢光Fv/Fm葉柄長度
英文關鍵詞: Hydrocotyle verticillata, amphibious plants, stomata, photosynthesis, chlorophyll fluorescence Fv/Fm, petiole length
論文種類: 學術論文
相關次數: 點閱:302下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討具有兩棲特性的植物銅錢草(Hydrocotyle verticillata ),當其生長的水陸環境及水位高度發生變化時,其生理及形態的變化。田野調查發現生長於水深處(水位高度超過30 cm)的銅錢草其葉柄長度較水淺處(水位高度未超過30 cm)的銅錢草葉柄長度更長;生長於三種環境下(陸生、水生挺水和水生浮水)的葉片間其葉片上下表皮氣孔密度比值沒有顯著差異,且不論其葉上表皮氣孔密度或其葉下表皮氣孔密度,也都沒有顯著差異,顯示環境改變對於銅錢草葉片氣孔在上下表皮的分佈沒有影響。
    實驗設計人工栽培陸生與水生銅錢草,在改變水陸環境前後測量淨光合作用率、氣孔導度、葉片細胞間隙二氧化碳濃度與葉綠素螢光參數Fv/Fm,並在提高水位的高度栽培前後測量其葉柄長度。研究結果發現,不論改變銅錢草栽培環境至水域或陸域環境下,其Fv / Fm皆無明顯變化,顯示環境中水分的增加或減少並未使銅錢草遭受很大的逆壓。當陸生個體移至水域三週後,平均淨光合作用率由0.98 ± 0.72 μmolCO2‧m-2s-1增高至3.71 ± 1.29 μmolCO2‧m-2s-1,增加量明顯高於維持在陸域環境下的陸生個體。這可能與氣孔導度和生化反應的增加有關。然而維持在陸域的個體其Fv / Fm由0.72 ± 0.05下降至0.61 ± 0.08,顯示其生化反應並無提升,故其淨光合作用率的增加可能是與氣孔導度增加有關。反之,當水生個體移至陸域三週後,其淨光合作用率的增加量和其他維持在水域的水生個體沒有明顯差異。根據其氣孔導度無明顯變化、細胞間二氧化碳明顯減少,以及其Fv/Fm無明顯變化,可推論其淨光合作用率的增加可能是與生化反應的增加有關,也可能與水生植株較廣大的根系發育有關。此外,銅錢草葉柄在環境由正常水位增加至高水位後延長57%,故推論銅錢草可藉由增加葉柄長度,以利水平舉高葉片,避免葉片浮水或完全沉水,使維持適當蒸散作用和氣體交換,以利進行光合作用。
    根據以上結果,顯示水域環境更有利銅錢草行光合作用,且當環境水分減少時,水生銅錢草也不容易陷入缺水逆境。由本研究得知銅錢草對於時而陸生、時而挺水,甚至是淹水的環境變動有很強的適應力,故當棲地淹水或水位上升的情況下,銅錢草可能會有更廣泛地分佈。至於銅錢草更廣泛地分佈是否將威脅原生物種、乾旱是否能限制其族群分佈,都將值得進一步的關注。

    This study examined how morphology and physiology of the amphibious plant, whorled marsh pennywort (Hydrocotyle verticillata Thunb.), respond to changes in aquatic and terrestrial environments and changes in water level. The ratio of stomatal density between upper and lower epidermis shows no significant difference among 3 groups: terrestrial leaf, emergent leaf, and floating leaf. There was also no significant difference in stomatal density of upper or lower epidermis among the 3 groups. The result indicates that these environmental changes do not affect the ratio of stomatal density between upper and lower epidermis of Hydrocotyle verticillata. Net photosynthesis rate(Pn), stomatal conductance(gs), intercellular CO2 concentration(Ci), the chlorophyll fluorescence (Fv / Fm ratio) and petiole length were investigated in cultured plants. After growing the terrestrial individuals in aquatic environment for 3, the Pn increases to 3.71 ± 1.29 μmolCO2‧m-2s-1 from 0.98 ± 0.72 μmolCO2‧m-2s-1. The increment of the terrestrial plants after aquatic treatment is significantly higher than the increment of plants in the control group, possibly due to the increase of the gs and biochemical reactions in the treated group. The Fv/Fm ratio of the terrestrial individuals decreases to 0.61 ± 0.08 from 0.72 ± 0.05, suggesting no increase in biochemical reactions. Thus, the increase in Pn may be related to the increase in the gs of the terrestrial ones.
    On the contrary, the Pn and the Fv/Fm ratio show no significant difference between the aquatic plants and the aquatic ones after growing under terrestrial environment for 3 weeks. There is no significant change in the gs and the Fv / Fm ratio but there is a significant decrease in Ci following the treatment. Thus, the increase in Pn may be related to the increase in biochemical reactions of the terrestrial ones. Besides, the petiole length of the aquatic plants extends by 57% after 3 weeks treatment with raising water level. The petiole length extension shows significant difference between the high water level ones and the regular water level ones. Apparently the blade can be lifted up vertically to avoid floating or being submerged. It is inferred that Hydrocotyle verticillata maintains proper transpiration and gas exchange by means of adjusting increase of petiole length.
    In summary, Hydrocotyle verticillata has higher capacity of photosynthesis in aquatic environment. Hydrocotyle verticillata can adapt changing environment of terrestrial, aquatic and even high water level condition with no sign of physiological stress. Hydrocotyle verticillata could grow extensively when facing water logged habitat or changes in water level. Whether or not the wide distribution of Hydrocotyle verticillata could threat the growth or survival of native plant species, and whether or not its distribution is limited by drought, deserve further investigations.

    誌 謝.......................................... I 摘 要.......................................... II Abstract....................................... IV 表 目 錄....................................... VII 圖 目 錄....................................... VIII 第壹章、前言................................... 1 第貳章、材料與方法............................. 5 一、研究物種................................. 5 二、田野調查................................. 6 三、栽培、處理與測量......................... 8 第參章、結果................................... 13 一、田野調查................................. 13 二、生理活動測量:淨光合作用率(Pn)、氣孔導度(gs) 、胞間二氧化碳濃度(Ci)、葉綠素螢光 Fv/Fm. 20 三、葉柄長度測量............................. 31 第肆章、討論................................... 33 一、生長環境與氣孔在上下表皮分佈之關係....... 33 二、水陸域環境轉變對生理活動之影響........... 34 三、水位高度改變對葉柄長度之影響............. 36 第伍章、結論................................... 37 第陸章、參考文獻.................................. 38 第柒章、附錄................................... 43 附錄1. 葉綠素螢光之相關原理.................. 43 附錄2. 銅錢草的分類.......................... 45

    楊遠波、劉和義、呂勝由、施炳霖。1998。臺灣維管束植物簡誌,第三卷,276、280-281頁。行政院農業委員會,臺灣:臺北。
    黃韋嘉。2005。台灣產天胡荽屬之分類研究。國立臺灣師範大學生物學研究所碩士論文,臺灣:臺北。
    陳葦玲、郭孚燿、陳榮五。2008。淹水逆境對於不同栽培品種小白菜種子發芽及植株生長之影響。臺中區農業改良場研究彙報。100:1-12頁。
    徐邦達。2003。葉綠素螢光和PAM螢光儀:原理及測量。光合作用研討會。1-9 頁。臺灣:臺中。

    Banga M, Blom CWPM, Voesenek LACJ. 1995. Flood-induced leaf elongation in Rumex species: effects of water depth and water movements. New Phytologist 131, 191-198.
    Baldwin BG, Goldman DH, Keil DJ, Patterson R, Rosatti TJ, Wilken DH, editors. 2012. The Jepson manual: vascular plants of California, second edition. University of California Press, Berkeley, CA, USA.
    Ballaré CL. 1994. Light gaps: sensing the light opportunities in highly dynamic canopy environments. In Exploitation of Environmental Heterogeneity by Plants (eds Caldwell MM & Pearcy RW). 73-110. Academic Press, San Diego, CA, USA.
    Bertamini M, Nedunchezhian N. 2002. Photoinhibition of photosynthesis in Vitis berlandieri and Vitis rupestris leaves under field conditions. Photosynthetica 40, 597-603.
    Bolhàr-Nordenkampf HR, Götzl M. 1992. Chlorophyllfluoreszenz als Indikator der mit Seehöhe zunehmenden Streßbelastung von Fichtennadeln. FBVA-Berichte Schriftenreihe der Forstlichen Bundesversuchsanstalt 67, 119-131.
    Busch J, Lösch R. 1999. The gas exchange of Carex species from eutrophic wetlands and its dependence on microclimate and soil wetness conditions. Physics and Chemistry of the Earth 24, 117-120.
    De Poorter M. 2007. Invasive Alien Species and Protected Areas: A Scoping Report Part I. Global Invasive Species Programme(GISP), Nairobi, Kenya.
    Deschamp PA, Cooke TJ. 1985. Leaf dimorphism in the aquatic angiosperm Callitriche heterophylla. American Journal of Botany 72, 1377-1387.
    Downie SR, Katz-Downie DS. 1996. A molecular phylogeny of Apiaceae subfamily Apioideae: Evidence from nuclear ribosomal DNA internal transcribed spacer sequences. American Journal of Botany 83, 234-251.
    Godfrey RK, Wooten JW. 1981. Aquatic and wetland plants of southeastern United States: Dicotyledons. University of Georgia Press, Athens, GA, USA.
    Griffin JJ, Ranny TG, Pharr DM. 2004. Photosynthesis, chlorophyll fluorescence, and carbohydrate content of illicium taxa grown under varied irradiance., Journal of the American Society for Horticultural Science 129, 46-43.
    Hiroe, M. 1979. Hydrocotyle. Umbelliferae of World. Ariake Book Company, Tokyo, Japan.
    Hussner A, Lösch R. 2007. Growth and photosynthesis of Hydrocotyle ranunculoides L.fil. in Central Europe. Flora 202, 653-660.
    Hussner A, Meyer C. 2009. The influence of waterlevel on the growth and photosynthesis of Hydrocotyle ranunculoides L.fil. Flora 204, 755-761.
    Hussner A, Meyer C, Busch J. 2009. The influence of water level and nutrient availability on growth and root system development of Myriophyllum aquaticum. Weed Research 49, 73-80.
    Invasive Species Compendium (Beta) 2011. the Invasive Species Compendium, 2011 Edition. CAB International, Wallingford, UK. [Hydrocotyle verticillata ], [accessed on Jan., 20th, 2011] <http://www.cabi.org/isc/?compid=5&dsid=114861&loadmodule=datasheet&page=481&site=144>
    Jackson MB, Campbell DJ. 1976. Waterlogging and petiole epinasty in tomato: the role of ethylene and low oxygen. New Phytologist 76, 21-29.
    Kadono Y. 2004. Alien Aquatic Plants Naturalized in Japan: History
    and Present Status. Global Environmental Research 163-169.
    Kitao M, Lei TT, Koike T, Tobita H, Maruyama Y. 2006. Trade off between shade adaptation and mitigation of photoinhibition in leaves of Quercus mongolica and Acer mono acclimated to deep shade. Tree Physiology 26, 441-448.
    Krause GH, Weis E. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Physiology and Plant Molecular Biology 42, 313-349.
    Krause GH, Koroleva OY, Dalling JW and Winter K. 2001. Acclimation of tropical tree seedlings to excessive light in simulated tree-fall gaps. Plant, Cell and Environment 24, 1345-1352.
    Lambers HFS, Chapin III, Pons TL. 1998. Plant physiological ecology. Springer-Verlag, New York, USA.
    Leeflang L, During HJ, Werger MJA. 1998. The role of petioles in light acquisition by Hydrocotyle vulgaris L. in a vertical light gradient. Oecologia 117, 235-238.
    Maxwell K, Johnson GN. 2000. Chlorophyll fluoresence-a practical guide. Journal of Experimental Botany 51, 659-668.
    Müller P, Li XP, Niyogi KK. 2001. Non-Photochemical Quenching. A Response to Excess Light Energy. Plant Physiology 125, 1558-1566.
    Parolin P. 1998. Floristic composition and structure of two stands of Senna reticulata differing in age. Amazoniana 15, 113-128.
    Parolin P. 2000. Phenology and CO2-assimilation of trees in central Amazonian floodplains. Journal of Tropical Ecology 16, 465-473
    Parolin P. 2001. Morphological and physiological adjustments to waterlogging and drought in seedlings of Amazonian floodplain trees. Oecologia 128, 326-335.
    Ridge I. 1987. Ethylene and growth control in amphibious plants. In Plant Life in Aquatic and Amphibious Habitats (ed. Crawford RMM). 53-76. Blackwell Scientific, Oxford, UK.
    Robert AMV, Joris JB, Anton JMP, Timothy DC, Ankie HMA, Marten S, Theo ME, Raymond HJS, Catherine PD, Simon JM, Laurentius ACJV. 2005. Ethylene regulates fast apoplastic acidification and expansin A transcription during submergence-induced petiole elongation in Rumex palustris. The Plant Journal 43, 597-610.
    Roháček K, Barák M. 1999. Technique of the modulated chlorophyll fluorescence:basic concept ,useful parameters, and some applications. Photosynthetica 37, 339-363.
    Scholes J D, Press MC, Zipperlen SW. 1997. Differences in light energy utilisation and dissipation between dipterocarp rain forest tree seedlings. Oecologia 109, 41-48.
    Sculthorpe CD. 1967. The Biology of Aquatic Vascular Plants. Arnold, London, UK.
    Spence DHN. 1982. The zonation of plants in freshwater lakes. Advances in Ecological Research 12, 37-125.
    Maberly SC, Spence DHN. 1989. photosynthesis and photorespiration in freshwater organisms: amphibious plants. Aquatic Botany. 34, 267-286.
    United States Department of Agriculture (USDA), NRCS. 2012. The PLANTS Database (http://plants.usda.gov, 18 January 2012). National Plant Data Team, Greensboro, NC, USA.
    Voesenek, LACJ, Rijnders JHGM, Peeters AJM, Van de Steeg HMV, De Kroon H. 2004. Plant hormones regulate fast shoot elongation under water: from genes to communities. Ecology 85, 16-27.

    下載圖示
    QR CODE