研究生: |
孫嘉芳 |
---|---|
論文名稱: |
銅蛋白質模型錯合物研究:N,N-雙(5-甲基咪-4-甲基)-4-甲苯胺之銅錯合物的合成、結構及性質研究 |
指導教授: |
蘇展政
Su, Chan-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 200 |
中文關鍵詞: | 血青素 |
英文關鍵詞: | hemocyanin |
論文種類: | 學術論文 |
相關次數: | 點閱:193 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
為瞭解血青素金屬活性中心與氧氣進行的可逆反應,本研究合成了一個含雙咪的三牙基配子: N,N-雙(5-甲基咪-4-甲基)-4-甲苯胺(bmimt),以bmimt的一價銅錯合物[Cu(bmimt)]+分別於室溫及低溫下與氧氣進行反應,以電子吸收光譜判斷反應產物。
亦以配子bmimt成功地合成了一系列二價銅的錯合物:[Cu(bmimt)(phen)](ClO4)2(CH3OH)、[Cu(bmimt)(sp)](ClO4)2(H2O)、[Cu(bmimt)(bipy)(ClO4)](ClO4)(H2O)、[Cu(bmimt)2](ClO4)2(CH3OH)2、[Cu(bmimt)(H2O)(ClO4)](ClO4)(CH3CN)2、[Cu(bmimt)Br2],其中phen為1,10-二氮雜菲,bipy為2,2¢-聯啶,sp為(-)-sparteine,均為雙牙基。利用元素分析、紅外光光譜、電子順磁共振光譜、紫外光-可見光吸收光譜、環伏安法及X-光單晶結構解析等方法,完成錯合物結構鑑定及鍵結性質的探討。
目前已完成X-光單晶結構解析的二價銅錯合物有:
(1) mer-[Cu(bmimt)Br2](2H2O)
屬於單斜晶系(monoclinic),空間群為C2/c,晶格常數:a=16.627(5)Å,b=21.040(5)Å,c=14.663(2)Å,V=4367(2)Å3,β=121.65(2)°;每個單位晶格內含有8個分子 (Z=8),精算值R=0.064,Rw=0.075。
(2) mer-[Cu(bmimt)(DMF)(CH3COO)](ClO4)(H2O)
屬於單斜晶系(monoclinic),空間群為Cc,晶格常數:a=17.928(3) Å,b=11.705(2)Å,c=17.010(23)Å,V=2815.3(8)Å3,β=127.94(2) °;每個單位晶格內含有4個分子(Z=4),精算值R=0.067,Rw=0.072。
(3) mer-[Cu(bmimt)(ClO4)(H2O)](ClO4)(H2O)
屬於單斜晶系(monoclinic),空間群為P21/a,晶格常數:a=13.429(6)Å,b=11.357(3)Å,c=17.152(4)Å,V=2498(1)Å3,β=107.23(3)°;每個單位晶格內含有4個分子(Z=4),精算值R=0.058,Rw=0.058。
(4) fac-[Cu(bmimt)(bipy)(ClO4)](ClO4)(H2O)
屬於斜方晶系(Orthorhombic),空間群為P21cn,晶格常數:a=14.289(2)Å,b=14.436(4)Å,c=15.604(4)Å,V=3218.6(13)Å3;每個單位晶格內含有4個分子(Z=4),精算值R=0.045,Rw=0.045。
(5) fac-[Cu2(bmimt)2(phen)2(ClO4)](ClO4)3(H2O)2
屬於三斜晶系(Triclinic),空間群為P¯1,晶格常數:a=13.1592(3)Å,b=16.4803(3)Å,c=16.7286(3)Å,a=110.8782(12)°,β=100.9352(10)°,g=91.1272(8)°;每個單位晶格內含有2個分子(Z=2),精算值R(all)=0.119,R(gt)=0.083。
由X-光單晶結構解析得知此系列錯合物為四角錐或拉長的八面體結構,在(4)、(5)中,bmimt為面形(facial)的鍵結模式,推測bmimt配子的鍵結模式與錯合物中其它配子的性質有極大關聯。
利用所合成bmimt的一價銅錯合物,於室溫下進行酪胺酸模型系統(tyrosinase model system)反應測試,初步探討其催化性質,知其可將3,5-雙第三丁基鄰苯二酚催化成3,5-雙第三丁基雙,與酪胺酸有相似的催化能力,推測其催化反應過程中一價銅錯合物應該有形成m-h2: h2-peroxo鍵結型式的錯合物。
Abstract
In order to reveal the oxygen-carrying properties of hemocyanins, a tridentate ligand:N,N-bis(5-methylimidazolyl-4-methyl)-4¢-toluidine (bmimt) has been synthesized and charactered. The reactions of [Cu(bmimt)]+ complex with O2 at either room temp. or low temp.(-20℃) have been investigated. Based on the electronic spectral data, [Cu(bmimt)]+ is likely forming a m-h2: h2-peroxo complex at room temperature.
Six mixed ligand copper(II) complexes, [Cu(bmimt)(phen)](ClO4)2- (CH3OH), [Cu(bmimt)(bipy)(ClO4)](ClO4)(H2O), [Cu(bmimt)(H2O)- (ClO4)](ClO4)(CH3CN)2, [Cu(bmimt)2](ClO4)2(CH3OH)2, [Cu(bmimt)- (sp)](ClO4)2(H2O), and [Cu(bmimt)Br2], where phen = 1,10- phenarthroline, bipy = 2,2¢-bipyridine, sp = (-)-sparteine, have been synthesized and characterized by elemental analyses, infrared, electronic absorption, cyclic voltammetry, and EPR spectroscopic measurements.
The crystal and molecular structures of four Cu(II) complexes have been determined by the single-crystal X-ray diffraction method. Their crystal data are described below:
(1) mer-[Cu(bmimt)Br2](2H2O)
Monoclinic, space group C2/c with a=16.627(5) Å, b=21.040(5)Å, c=14.663(2)Å, V=4367(2)Å3, β=121.65(2)°, Z=8, R=0.064 and Rw=0.075.
(2) mer-[Cu(bmimt)(DMF)(CH3COO)](ClO4)(H2O)
Monoclinic, space group Cc with a=17.928(3)Å, b=11.705(2)Å, c=17.010(23)Å, V=2815.3(8)Å3, β=127.94(2)°, Z=4, R=0.067 and Rw=0.072.
(3) mer-[Cu(bmimt)(ClO4)(H2O)](ClO4)(H2O)
Monoclinic, space group P21/a with a=13.429(6)Å, b=11.357(3)Å, c=17.152(4)Å, V=2498(1)Å3, β=107.23(3)°, Z=4, R=0.058 and Rw=0.058.
(4) fac-[Cu(bmimt)(bipy)(ClO4)](ClO4)(H2O)
Orthorhombic, space group P21cn with a=14.289(2)Å, b=14.436(4)Å, c=15.604(4)Å, V=3218.6(13)Å3, Z=4, R=0.045 and Rw=0.045.
(5) fac-[Cu2(bmimt)2(phen)2(ClO4)](ClO4)3(H2O)2
Triclinic, space group P¯1 with a=13.1592(3)Å, b=16.4803(3)Å, c=16.7286(3)Å, a=110.8782(12)°, β=100.9352(10)°, g=91.1272(8)°, Z=2, R(all)=0.119 and R(gt)=0.083。
The crystallographic results suggest that the bmimt tridentate ligand tends to retain a facial configuration when the other binding ligand is a didentate. The configuration of the tridentate ligand is dependent on the coordination capabilities of other ligands presented in the complexes.
Preliminary studies on tyrosinase modelling have been performed.The [Cu(bmimt)]+ complex showed high reactivites toward the oxidation of 3,5-di-tert-butylcatechol by O2, suggesting formation of m-h2:h2-peroxo intermediates.
參考文獻
1. R. Toso, A. SEGA, M. MIHALIC, F. KAJFEZ, V. ŠUNJIC, Gazz. Chim. Ital., 1979, 109, 529.
2. H. Ohtsu, S. Itoh, S. Nagatomo, T. Kitagawa, S. Ogo, Y. Watanabe, S. Fukuzumi, Inorg. Chem., 2001, 40, 3200.
3. S. Torelli, C. Belle, I. Gautier-Luneau, J. L. Pierre, Inorg. Chem., 2000, 39, 3526.
4. D. A. Thornton, G. M. Watkins, J. Coord. Chem., 1992, 25, 299.
5. G. W. Watt, D. S. Klett, SpectroChim. Acta., 1964, 20, 1053.
6. Y. Saito, J. Takemoto, B. Hutchinson, K. Nakamoto, Inorg. Chem., 1970, 11, 2003.
7. B. J. Hathaway, D. E. Billing, Coord. Chem. Rev., 1970, 5, 143.
8. B. J. Hathaway, Struct. Bonding, 1973, 14, 49.
9. A. Bellocq, C. Perchard, A. Novak, M. Josien, 〝Vibrational Spectra of Imidazole, Imidazole-1-d1, Imidazole-2,4,5-d3, and Imidazole-d4. I. Region 4000 to 1700 cm-1,〞J. Chim. Phys., 1965, 62, 1334.
10. 黃進松,國立台灣師範大學化學研究所博士論文,1999。
11. B. Cornilsen, K. Nakamoto, J. Inorg. Nucl. Chem., 1974, 36, 2467.
12. C. C. Su, Y.-L. Lin, S.-J. Liu, T.-H. Chang, S.-L. Wang, F.-L. Liao, Polyhedron, 1993, 12, 2687.
13. 劉世鈞,國立台灣師範大學化學研究所博士論文,1995。
14. R. S. Himmelwright, N. C. Eickman, C. D. Lubein, E. I. Solmon, J. Am. Chem. Soc., 1980, 102, 5378.
15. V. M. Miskowski, J. A. Thich, E. I. Solomon, H. J. Schugar, J. Am. Chem. Soc., 1976, 98, 8344.
16. E. I. Solomon, Pure and Appl. Chem., 1983, 55, 1069.
17. R. S. Nicholson, I. Shain, Anal. Chem., 1964, 36, 706.
18. R. L. Belford, M. Calrin, G. Belford, J. Chem. Phys., 1957, 26, 1165.
19. S. L. Wang, P. C. Wang, Y. P. Nieh, J. Appl. Cryst., 1990, 23, 520.
20. K. Christopher Mathews, K. E. van Holde, Biochemistry, 1990, 653, Benjamin/Cumming, Inc. Redwood, CA.
21. K. A. Magnus, H. Ton-That, J. E. Carpenter, in Bioinorganic Chemistry of Copper, K. D. Karlin, Z. Eds. Tyeklar, Chapman& Hall, New York, 1993, 143-150.
22. (a) D. M. Dooley, R. A. Scott, J. Ellinhaus, E. I. Solomon, H. B. Gray, Proc.Natl. Acas. Sci. U. S. A., 1978, 75, 3019.; (b) T. H. Moss, D. C. Gould, A. Ehrenberg, J. S. Loehr, H. S. Mason, Biochemistry, 1973, 12, 2444.; (c) E. I. Solomon, D. M. Dooley, R. H. Wang, H. B. Gray, M. Cerdonio, F. Mogno, G. L. Romani, J. Am. Chem. Soc., 1976, 98, 1029.
23. (a) N. Kitajima, K. Fujisawa, Y. Moro-oka, K. Toriumi, J. Am. Chem. Soc., 1989, 111, 8975.; (b) N. Kitajima, K. Fujisawa, C. Fujimoto, Y. Moro-oka, S. Hashimoto, T. Kitagawa, K. Toriumi, K. Tatsumi, A. Nakamura, J. Am. Chem. Soc., 1992, 114, 1277.
24. C. C. Su, T. T. Hwang, Y. P. Wang, Transition Net. Chem., 1992, 13, 2522.
25. J. B. Hodgson, G. C. Percy, D. A. Thornton, J. Mol. Struct., 1980, 66, 81.
26. B. J. Hathaway, D. E. Billing, Coord. Chem. Rev., 1970, 5, 143.
27. W. K. Musker, M. S. Huaasim, Inorg. Chem. Nucl. Chem., 1967, 3, 271.
28. C. D. Olsen, G. Basu, R. L. Belford, J. Coord. Chem., 1971, 1, 17.
29. M. Kodera, K. Katayama, Y. Tachi, K. Kano, S. Hirota, S. Fujinami, M. Suzuki, J. Am. Chem. Soc., 1999, 121, 11006.
30. E. Monzani, L. Quinti, L. Casella, Inorg.Chem., 1998, 37, 553.
31. L. Casella, M. Gullotti, R. Radaelli, P. D. Gennaro, J. Chem. Soc. Chem. Commun, 1991.
32. J. Cahoy, P. L.Holland, W. B. Tolman, Inorg. Chem., 1999, 38, 2161.
33. J. A. Halfen, S. Mahapatra, E. C. Wilkinson, S. Kaderli, V. G. Young, L.Que, A. D. Zuberbühler, W. B. Tolman, Science, 1996, 271, 1397.
34. S. Torelli, C. Belle, I. Gautier-Luneau, J. L. Pierre, E. Saint-Aman, J. M. Latour, L. Pape, D. Luneau, Inorg. Chem., 2000, 39, 3526.
35. N. Kitajima, T. Koda, Y. Iwata, Y. Moro-oka, J. Am. Chem. Soc., 1990, 112, 8833.