簡易檢索 / 詳目顯示

研究生: 林立
Li Lin
論文名稱: 三個變數之硬幣問題之延伸研究
An Extension Study of the Coin Problem for Three Variables
指導教授: 林順喜
Lin, Shun-Shii
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 46
中文關鍵詞: 硬幣問題找錢問題換硬幣問題Frobenius數
英文關鍵詞: Coin Problem, Money-Changing Problem, Coin Exchange Problem, Frobenius Number
論文種類: 學術論文
相關次數: 點閱:236下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   硬幣問題又叫找錢問題或換硬幣問題,是一個十分著名的問題。硬幣問題是求由給定不同幣值的硬幣,其最大不能湊出來的金額。在三個變數下,此問題尚未有通解,但已知在某些情況下有解或是上限值。在2007年吳京達的論文「三個變數之硬幣問題之研究」證明三個變數下最小數為6以下的解。本論文繼續在三個變數的情況做討論,以填表法加上設計程式猜測,證明最小數為7的解規則,猜測最小數為16以下的解規則,並且整理出證明的原則,和實作出部分的機械證明。期望將機械證明完成,破解最小數為16以下的三個變數硬幣問題,未來進一步破解大量三個變數下的硬幣問題。

      The coin problem is known as the money-changing problem, the coin exchange problem, or the stamp exchange problem, which is an old and famous problem. The coin problem is to ask for the largest integer that cannot be made up from the given integers. Now it already has solutions for two variables and has been proven that there is no closed-form solution for more than three variables. For three variables, there are upper bounds or certain formulas in some situations.
    This thesis extends the result of “Research on the Coin Problem for Three Variables”. We build a program that can guess the linear formulas of the coin problem for three variables, with its smallest value up to 16. Also, we prove the guessing of the linear formulas is correct when the smallest value is 7. Furthermore, we deduced some properties for automated theorem proving and built a program that can partly prove the linear formulas. With these results, we may solve the coin problem for three variables in the future.

    摘 要 ABSTRACT 目錄 ii 表目錄 iii 圖目錄 iv 第一章 緒論 1 第一節 前言與研究動機 1 第二節 研究成果及論文架構 2 第二章 文獻探討 4 第一節 傳統數學公式解與上限值 4 第二節 「三個變數之硬幣問題」論文的填表解法 5 第三章 解規則與線規則 8 第一節 研究成果及論文架構 8 第二節 名詞定義 8 第三節 Frobenius 表格製作 10 第四節 解規則猜測 14 第五節 線規則猜測 20 第六節 例外解規則處理 25 第七節 解規則證明 27 第八節 證明原則整理 31 第九節 機械證明架構 32 第四章 規律觀察 36 第一節 規則變化規律 36 第五章 結論及未來工作 38 最小數從7至12的解規則表格 40 參考文獻 45

    [1] F. Aguiló, A. Miralles, “On the Frobenius’ problem of three numbers,” Discrete Mathematics &Theoretical Computer Science, Vol.AE, 2005, pp.317-322.
    [2] 吳京達(2007),「三個變數之硬幣問題之研究」,國立臺灣師範大學,碩士論文。
    [3] E. W. Weisstein, “Diophantine equation,” From MathWorld--A Wolfram Web Resource, http://mathworld.wolfram.com/DiophantineEquation.html.
    [4] T. C. Brown, P. J. Shiue, “A remark related to the Frobenius problem,” Fibonacci Quarterly, Vol.31, 1993, pp.31-36.
    [5] E. W. Weisstein, “McNuggetNumber,” From MathWorld—A Wolfram Web Resource, http://mathworld.wolfram.com/McNuggetNumber.html.
    [6] J. Dixmier, “Proof of a conjecture by Erd¨os and Graham concerning the problem of Frobenius,” Journal of Number Theory, Vol.34, 1990, pp.198-209.
    [7] A. Tripathi, S. Vijay, “On a generalization of coin exchange problem for three variables,” Journal of Integer Sequences, Vol.9, 2006, Article 06.4.6.
    [8] Y. Vitek, “Bounds for a linear Diophantine problem of Frobenius,” Jurnal of London Mathematical Society, Vol.10, 1975, pp.79-85.
    [9] J. L. R. Alfonsín, The Diophantine Frobenius problem, Oxford Lecture Series in Mathematics and its Applications, Oxford Univerity Press, 2005.
    [10] J. J. Sylvester, “Mathematical questions with their solutions,” The Educational Times, Vol.41, 1884, pp.21.
    [11] 林立、林順喜(2012,6月)。三個變數之硬幣問題之延伸研究。資訊技術應用及管理研討會,高雄市。

    下載圖示
    QR CODE