簡易檢索 / 詳目顯示

研究生: 林高弘
Lin, Kao-Hung
論文名稱: 作業前靜息態腦波源訊號連結和高爾夫推桿表現的關係
The relationship between pre-task resting-state EEG source connectivity and golf putting performance
指導教授: 洪聰敏
Hung, Tsung-Min
口試委員: 張育愷 黃崇儒
口試日期: 2021/01/26
學位類別: 碩士
Master
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 45
中文關鍵詞: 靜息態大腦活動精準性運動表現連結網路功能性連結分析
英文關鍵詞: resting-state brain activity, precision sport performance, brain connectivity networks, functional connectivity analysis
DOI URL: http://doi.org/10.6345/NTNU202100415
論文種類: 學術論文
相關次數: 點閱:95下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:過去探討大腦功能的研究主要都在關心作業誘發的大腦活動,然而,越來越多的證據指出,在沒有刺激和休息狀態下的大腦活動也是具有功能性意義的。在精準性運動的腦波研究主要都在探討動作執行準備期的大腦活動,不過靜息態腦波和運動表現的關係還並不明確。因此,本研究欲探討作業前靜息態腦波和推桿表現的關係,特別是源訊號層級的功能性連結。方法:本研究招募三十二位高爾夫球選手,測量參與者靜息態腦波源訊號連結和推桿表現。相關分析用來探討靜息態腦波源訊號連結和推桿表現的關連。結果:左中額葉迴 (left middle frontal gyrus; L. MFG) 和上顳葉迴 (right superior temporal gyrus; R. STG) 間在Beta頻率段的連結強度與推桿進洞率有顯著正相關 (r = 0.72, p = 3.07 × 10-6)。結論:本研究使用源訊號分析進一步探討與運動表現有關的神經機制,並較精確定位出額葉與右顳葉區連結的訊號來源。這代表靜息態腦波功能性連結可以作為一個區別個體化推桿表現的工具。本研究展示了視覺空間相關的訊息與工作記憶或是與動作準備相關的歷程互相配合,在運動表現中的重要性。

    Purpose: Former research in cognitive neuroscience domain were mainly focused on task-induced brain activity. However, accumulative evidences showed that our brain is active and functioning meaningfully even at resting-state. In the precision sport domain, most of the EEG study were focusing on task-related brain activity. The relationship between resting-state EEG and precision sports performance is still unclear. Therefore, the current research investigated the relationship between resting-state EEG and golf putting performance, especially by using the measure of source space functional connectivity. Methods: 32 golfers were recruited. Participants’ resting-state EEG and putting performance were measured. The relationship between resting-state EEG and putting performance was analysed by Spearman’s correlation analysis. Results: The connectivity strength between left middle frontal gyrus and right superior temporal gyrus in beta frequency is positively correlated with putting performance (r = 0.72, p = 3.07 × 10-6). Conclusions: The current research uses source connectivity to analyse the relationship between resting-state EEG and putting performance. It shows that resting-state EEG can detect the individual differences of putting performance. The results show that visual-spatial processing with working memory or motor preparation mechanism is crucial for leading to superior sport performance.

    中文摘要………………………………………………………………….…………….……i 英文摘要…………………………………………………………………………………….ii 目次……………………………………………………………………………………....…iii 表次……………………………………………………………………………………....…..v 圖次……………………………………………………………………………………........vi 第壹章 緒論………………………………………………………………....1 第一節 問題背景…………………………………………………………………..…1 第二節 研究目的……………………………………………………………………..7 第三節 研究問題…………………………………………………………..…………7 第四節 研究假設………………………………………………………...………...…8 第貳章 文獻探討……………………………………………………………9 第一節 競技運動腦電波研究…………………………………………………..……9 第二節 靜息態大腦活動…………………………………………………………..…..11 第三節 靜息態大腦活動與行為表現…………………………………………..…..14 第四節 靜息態腦波與競技運動表現……………………………………..…..15 第五節 腦電波與腦造影方法………………………………………………………18 第六節 文獻探討總結………………………………………………………………19 第參章 研究方法與步驟…………………………………………………..21 第一節 實驗參與者…………………………………………………………………21 第二節 腦波測量與記錄……………………………………………………………21 第三節 推桿作業……………………………………………………………....……22 第四節 實驗流程…………………………………………………………………....22 第五節 腦波訊號處理…………………………………………………………..…..23 第六節 統計分析……………………………………………………………………24 第肆章 結果……………………………………………………………..…27 第伍章 討論……………………………………………………………..…29 第一節 L. MFG – R. STG連結與推桿表現的關聯……………………………..…29 第二節 額葉與右顳葉區域功能性連結在精準性運動中扮演的角色……………31 第三節 研究限制與未來建議…………..………………………………………..…32 參考文獻…………………………………………………………………….35

    高士竣, 洪聰敏, & 黃崇儒. (2009). 較佳精準運動表現中專注的腦波特徵. 中華體育
    季刊, 23(3), 1-16.

    Babiloni, C., Del Percio, C., Iacoboni, M., Infarinato, F., Lizio, R., Marzano, N., Crespi, G.,
    Dassù, F., Pirritano, M., Gallamini, M., & Eusebi, F.,( 2008). Golf putt outcomes are
    predicted by sensorimotor cerebral EEG rhythms. The Journal of Physiology, 586 (1),
    131–139.

    Babiloni, C., Marzano, N., Iacoboni, M., Infarinato, F., Aschieri, P., Buffo, P., Cibelli, G.,
    Soricelli, A., Eusebi, F., & Del Percio, C. (2010). Resting state cortical rhythms in athletes: a high-resolution EEG study. Brain Research Bulletin, 81(1), 149 –156.

    Baldassare, A., Lewis, C. M., Committeri, G., Snyder, A. Z., Romani, G. L., &
    Corbetta, M., (2012). Individual variability in functional connectivity predicts
    performance of a perceptual task. Proceedings of the National Academy of
    Science of the United State of America, 109, 3516–3521.

    Bastos, A. M., & Schoffelen, J. M. (2016). A tutorial review of functional connectivity
    analysis methods and their interpretational pitfalls. Frontiers in systems
    neuroscience, 9, 175.

    Baumeister, J., Reinecke, K., Liesen, H., & Weiss, M. (2008). Cortical activity of skilled
    performance in a complex sports related motor task. European Journal of Applied Physiology, 104, 625–631.

    Bear, M. F., Connors, B. W., & Paradiso, M. A. (2007). Neuroscience: Exploring the brain.
    3rd ed. Philadelphia: Lippincott Williams & Wilkins.

    Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and
    powerful approach to multiple testing. Journal of the Royal statistical society: series B
    (Methodological), 57(1), 289-300.

    Baumeister, J., Reinecke, K., Liesen, H., & Weiss, M. (2008). Cortical activity of skilled
    performance in a complex sports related motor task. Eur J Appl Physiol, 104(4),
    625-631. doi:10.1007/s00421-008-0811-x

    Brookes, M. J., Woolrich, M., Luckhoo, H., Price, D., Hale, J. R., Stephenson, M. C., . . .
    Morris, P. G. (2011). Investigating the electrophysiological basis of resting state
    networks using magnetoencephalography. Proceedings of the national academy of
    sciences, 108(40), 16783-16788.

    Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of
    structural and functional systems. Nature reviews neuroscience, 10(3), 186-198

    Buszard, T., Farrow, D., Zhu, F. F., & Masters, R. S. (2016). The relationship between
    working memory capacity and cortical activity during performance of a novel motor
    task. Psychology of Sport and Exercise, 22, 247-254.

    Cantou, P., Platel, H., Desgranges, B., & Groussard, M. (2018). How motor, cognitive and
    musical expertise shapes the brain: Focus on fMRI and EEG resting-state functional
    connectivity. Journal of Chemical Neuroanatomy, 89, 60-68.

    Chang, C. Y., Chen, Y. H., & Yen, N. S. (2018). Nonlinear neuroplasticity corresponding to
    sports experience: A voxel‐based morphometry and resting‐state functional connectivity
    study. Human Brain Mapping, 39(11), 4393-4403.

    Chang, C.-Y., & Hung, T.-M. (2020). Understanding and Controlling Cortical Activity for
    Superior Performance. Kinesiology Review, 1(aop), 1-10.

    Chatrian, G. E., Lettich, E., & Nelson, P. L. (1985). Ten percent electrode system for
    topographic studies of spontaneous and evoked EEG activity. American Journal of
    EEG Technology, 25, 83–92.

    Cheng, M.-Y., Huang, C.-J., Chang, Y.-K., Koester, D., Schack, T., & Hung, T.-M. (2015).
    Sensorimotor rhythm neurofeedback enhances golf putting performance. Journal of
    Sport and Exercise Psychology, 37(6), 626-636.

    Christie, S., di Fronso, S., Bertollo, M., & Werthner, P. (2017). Individual Alpha Peak
    Frequency in Ice Hockey Shooting Performance. Frontiers in Psychology, 8, 762.

    Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S., & Petersen, S. E. (2014). Intrinsic
    and task-evoked network architectures of the human brain. Neuron, 83, 238 –251.

    Cooke, A. (2013). Readying the head and steadying the heart: A review of cortical and
    cardiac studies of preparation for action in sport. International Review of Sport and
    Exercise Psychology, 6(1), 122-138.

    Curtis, C. E., & D'Esposito, M. (2003). Persistent activity in the prefrontal cortex during
    working memory. Trends in cognitive sciences, 7(9), 415-423.

    Damoiseaux, J. S., Rombouts, S. A., Barkhof, F., Scheltens, P., & Stam, C. J. (2006).
    Consistent resting-state networks across healthy subjects. Proceedings of the National
    Academy of Science of the United State of America, 103, 13848–53.

    Deco, G., Jirsa, V. K., & McIntosh, A. R., (2011). Emerging concepts for the dynamical
    organization of resting-state activity in the brain. Nature Review Neuroscience, 12,
    43–56.

    Deeny, S. P., Haufler, A. J., Saffer, M., & Hatfield, B. D. (2009). Electroencephalographic
    coherence during visuomotor performance: a comparison of cortico-cortical
    communication in experts and novices. Journal of Motor Behavior, 41(2), 106 –116.

    Deeny, S. P., Hillman, C. H., Janelle, C. M., & Hatfield, B. D. (2003). Cortico–cortical
    communication and superior performance in skilled marksmen: An EEG coherence
    analysis. Journal of Sport and Exercise Psychology, 25, 188–204.

    Del Percio, C., Babiloni, C., Bertollo, M., Marzano, N., Iacoboni, M., Infarinato, F., Lizio,
    R., Stocchi, M., Robazza, C., Cibelli, G., Comani, S., & Eusebi, F. (2009). Visuo-
    attentional and sensorimotor alpha rhythms are related to visuomotor performance in
    athletes. Human Brain Mapping, 30, 3527–3540.

    Del Percio, C., Infarinato, F., Marzano, N., Iacoboni, M., Aschieri, P., Lizio, R., &
    Babiloni, C. (2011). Reactivity of alpha rhythms to eyes opening is lower in athletes
    than non-athletes: A high-resolution EEG study. International Journal of
    Psychophysiology, 82, 240–247.

    Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single
    trial EEG dynamics including independent component analysis. Journal of
    Neuroscience Methods, 134, 9 –21.

    Di, X., Zhu, S., Jin, H., Wang, P., Ye, Z., Zhou, K., ... & Rao, H. (2012). Altered resting brain
    function and structure in professional badminton players. Brain connectivity, 2(4),
    225-233.

    Doppelmayr, M., Finkenzeller, T., & Sauseng, P. (2008). Frontal midline theta in the
    pre-shot phase of rifle shooting: differences between experts and
    novices. Neuropsychologia, 46(5), 1463-1467.

    Dubois, J., & Adolphs, R. (2016). Building a science of individual differences from fMRI.
    Trends in cognitive sciences, 20(6), 425-443.

    Ellison, A., Schindler, I., Pattison, L. L., & Milner, A. D. (2004). An exploration of the role of
    the superior temporal gyrus in visual search and spatial perception using
    TMS. Brain, 127(10), 2307-2315.

    Friston, K. J. (2011). Functional and effective connectivity: A review. Brain Connectivity,
    1(1), 13-36.

    Genovese, C. R., Lazar, N. A., & Nichols, T., (2002). Thresholding of statistical maps in
    functional neuroimaging using the false discovery rate. NeuroImage, 15(4), 870 – 878.

    Gharabaghi, A., Berger, M. F., Tatagiba, M., & Karnath, H. O. (2006). The role of the right
    superior temporal gyrus in visual search—insights from intraoperative electrical
    stimulation. Neuropsychologia, 44(12), 2578-2581.

    Gong, A., Liu, J., Li, F., Liu, F., Jiang, C., & Fu, Y. (2017). Correlation Between Resting-
    state Electroencephalographic Characteristics and Shooting Performance.
    Neuroscience, 366, 172-183.

    Gong, A., Liu, J., Lu, L., Wu, G., Jiang, C., & Fu, Y. (2019). Characteristic differences
    between the brain networks of high-level shooting athletes and non-athletes calculated
    using the phase-locking value algorithm. Biomedical Signal Processing and Control,
    51, 128-137.

    Guerra-Carrillo, B., Mackey, A. P., & Bunge, S. A. (2014). Resting-state fMRI: a window
    into human brain plasticity. The Neuroscientist, 20(5), 522-533.

    Guo, Z., Huang, X., Wang, M., Jones, J. A., Dai, Z., Li, W., Liu, P., & Liu, H. (2016).
    Regional homogeneity of intrinsic brain activity correlates with auditory-motor processing of vocal pitch errors. NeuroImage, 142, 565–575.

    Hampson, M., Driesen, N. R., Skudlarski, P., Gore, J. C., & Constable, R. T. (2006). Brain
    connectivity related to working memory performance. Journal of Neuroscience, 26,
    13338–13343.

    Hardmeier, M., Hatz, F., Bousleiman, H., Schindler, C., Stam, C. J., & Fuhr, P. (2014).
    Reproducibility of functional connectivity and graph measures based on the phase lag
    index (PLI) and weighted phase lag index (wPLI) derived from high resolution EEG.
    PLoS One, 9, e108648.

    Hassan, M., Dufor, O., Merlet, I., Berrou, C., & Wendling, F. (2014). EEG Source
    Connectivity Analysis: From Dense Array Recordings to Brain Networks. PLoS ONE,
    9(8), e105041.

    Hatfield, B. D. (2018). Brain dynamics and motor behavior: A case for efficiency and
    refinement for superior performance. Kinesiology Review, 7(1), 42–50.

    Hatfield, B.D., & Hillman, C.H. (2001). The psychophysiology of sport: A mechanistic
    understanding of the psychology of superior performance. In R.N. Singer, C.H.
    Hausenblas, & C.M. Janelle (Eds.), Handbook of sport psychology (2nd ed., pp.
    362–386). New York, NY: John Wiley & Sons, Inc.

    Hatfield, B. D., Landers, D. M., & Ray, W. J. (1984). Cognitive processes during self-paced
    motor performance: An electroencephalographic profile of skilled marksmen. Journal
    of Sport and Exercise Psychology, 6(1), 42-59.

    Hermens, D. F., Soei, E. X., Clarke, S. D., Kohn, M. R., Gordon, E., & Williams, L. M.
    (2005). Resting EEG theta 554 activity predicts cognitive performance in
    attention-deficit hyperactivity disorder. Pediatric Neurology, 32, 248–56.

    Hung, C. L., Hung, T. M., & Chang, C. W. (2009). Comparison of Best and Worst
    Performance on EEG Coherence in Skilled Dart Players. Psychophysiology, 46, 135-135.

    Kao, S. C., Huang, C. J., & Hung, T. M. (2013). Frontal midline theta is a specific indicator
    of optimal attentional engagement during skilled putting performance. Journal of Sport
    and Exercise Psychology, 35(5), 470-478.

    Karamacoska, D., Barry, R. J., & Steiner, G. Z. (2017). Resting state intrinsic EEG impacts
    on go stimulus‐response processes. Psychophysiology, 54, 894–903.

    Karamacoska, D., Barry, R. J., & Steiner, G. Z. (2019). Using principal components analysis
    to examine resting state eeg in relation to task performance. Psychophysiology, e13327.

    Klein, C., Liem, F., Hänggi, J., Elmer, S., & Jäncke, L. (2015). The “silent” imprint of musical
    training. Human Brain Mapping, 37, 536.

    Langer, N., Pedroni, A., Gianotti, L. R., Hänggi, J., Knoch, D., & Jäncke, L. (2012).
    Functional brain network efficiency predicts intelligence. Human brain mapping,
    33(6), 1393-1406.

    Li, G., He, H., Huang, M., Zhang, X., Lu, J., Lai, Y., ... & Yao, D. (2015). Identifying
    enhanced cortico-basal ganglia loops associated with prolonged dance
    training. Scientific reports, 5(1), 1-11.

    Marquetand, J., Vannoni, S., Carboni, M., Hegner, Y. L., Stier, C., Braun, C., & Focke, N. K.
    (2019). Reliability of Magnetoencephalography and High-Density
    Electroencephalography Resting-State Functional Connectivity Metrics. Brain
    Connectivity, 9(7).

    Mennes, M., Zuo, X. N., Kelly, C., Di Martino, A., Zang, Y. F., Biswal, B., Castellanos, F. X.,
    & Milham, M. P. (2011). Linking inter-individual differences in neural activation and
    behavior to intrinsic brain dynamics. NeuroImage, 54, 2950–2959.

    Michel, C. M., & Brunet, D. (2019). EEG source imaging: a practical review of the analysis
    steps. Frontiers in neurology, 10, 325.

    Michel, C. M., & Murray, M. M. (2012). Towards the utilization of EEG as a brain imaging
    tool. NeuroImage, 61(2), 371-385.

    Mirifar, A., Beckmann, J., & Ehrlenspiel, F. (2017). Neurofeedback as supplementary
    training for optimizing athletes' performance: A systematic review with implications
    for future research. Neuroscience & Biobehavioral Review, 75, 419-432.

    Mulert, C., Jager, L., Schmitt, R., Bussfeld, P., Pogarell, O., Möller, H. J., Juckel, G., &
    Hegerl, U. (2004). Integration of fMRI and simultaneous EEG: towards a comprehensive
    understanding of localization and time-course of brain activity in target detection.
    NeuroImage, 22, 83–94.

    Neubauer, A. C., & Fink, A. (2009). Intelligence and neural efficiency. Neuroscience &
    Biobehavioral Reviews, 33(7), 1004-1023.

    Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., & Hallett, M. (2004). Identifying true
    brain interaction from EEG data using the imaginary part of coherency. Clinical
    neurophysiology, 115(10), 2292-2307.

    Palva, S., & Palva, J. M. (2012). Discovering oscillatory interaction networks with M/EEG:
    Challenges and breakthroughs. Trends in Cognitive Sciences, 16, 219–230.

    Parasuraman, R., & Jiang, Y. (2012). Individual differences in cognition, affect, and
    performance: Behavioral, neuroimaging, and molecular genetic
    approaches. Neuroimage, 59(1), 70-82.

    Pascual-Marqui, R. D., Lehmann, D., Koukkou, M., Kochi, K., Anderer, P., Saletu, B.,
    Tanaka, H., Hirata, K., John, E. R., Prichep, L., Biscay-Lirio, R. & Kinoshita, T.
    (2011). Assessing interactions in the brain with exact low-resolution electromagnetic
    tomography. Philosophical Transactions of the Royal Society A, 369, 3768–3784.

    Pedersen, J. R., Johannsen, P., Bak, C. K., Kofoed, B., Saermark, K., & Gjedde, A. (1998).
    Origin of human motor readiness field linked to left middle frontal gyrus by MEG and
    PET. Neuroimage, 8(2), 214-220.

    Pernet, C. R., Wilcox, R. R., & Rousselet, G. A. (2013). Robust correlation analyses: false
    positive and power validation using a new open source matlab toolbox. Frontiers in
    psychology, 3, 606.

    Pontifex, M. B., Miskovic, V., & Laszlo, S. (2017). Evaluating the efficacy of fully
    automated approaches for the selection of eyeblink ICA
    components. Psychophysiology, 54(5), 780-791.

    Poole, V. N., Robinson, M. E., Singleton, O., DeGutis, J., Milberg, W. P.,
    McGlinchey, R. E., Salat, D. H., & Esterman, M. (2016). Intrinsic functional
    connectivity predicts individual differences in distractibility. Neuropsychologia,
    86, 176 –182.

    Raichle, M. E. (2006). The brain’s dark energy. Science, 314, 1249–50.

    Raichle, M. E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38,
    433–447.

    Raichle, M.E. (2010). Two views of brain function. Trends in Cognitive Sciences, 14,
    180 –190.

    Raichle, M. E., & Mintun, M. A. (2006). Brain work and brain imaging. Annual Review of
    Neuroscience, 29, 449–76.

    Raichlen, D. A., Bharadwaj, P. K., Fitzhugh, M. C., Haws, K. A., Torre, G. A., Trouard, T. P.,
    & Alexander, G. E. (2016). Differences in resting state functional connectivity between
    young adult endurance athletes and healthy controls. Frontiers in human
    neuroscience, 10, 610.

    Sadaghiani S., & Kleinschmidt A. (2013). Functional interactions between intrinsic brain
    activity and behavior. NeuroImage, 80, 379–386.

    Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H.,
    Reiss, A. L., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for
    salience processing and executive control. Journal of Neuroscience, 27, 2349–56

    Shulman, G. L., Fiez, J. A., Corbetta, M., Buckner, R. L., Miezin, F. M., Raichle, M. E., &
    Petersen, S. E. (1997). Common blood flow changes across visual tasks: II. Decreases in
    cerebral cortex. Journal of Cognitive Neuroscience, 9, 648–63.

    Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., Lewis-Peacock, J., . . . Oblak,
    E. (2017). Closed-loop brain training: the science of neurofeedback. Nature reviews
    neuroscience, 18(2), 86-100.

    Sockeel, S., Schwartz, D., Pelegrini-Issac, M., & Benali, H. (2016). Large scale functional
    networks identified from resting-state EEG using spatial ICA. PLoS One, 11, e0146845.

    Sporns, O. (2010). Dynamic patterns in spontaneous neural activity. Networks of the Brain,
    149-178.

    Tavor, I., Parker, J. O., Mars, R. B., Smith, S. M., Behrens, T. E., & Jbabdi, S. (2016). Task
    free MRI predicts individual differences in brain activity during task performance.
    Science, 352(6282), 216–220.

    Tian, L., Ren, J., & Zang, Y. (2012). Regional homogeneity of resting state fMRI signals
    predicts stop signal task performance. NeuroImage, 60(1), 539e544.

    Van de Steen, F., Faes, L., Karahan, E., Songsiri, J., Valdes-Sosa, P. A., & Marinazzo, D.
    (2019). Critical comments on EEG sensor space dynamical connectivity analysis. Brain
    topography, 32(4), 643-654.

    Van Den Heuvel, M. P., Mandl, R. C., Kahn, R. S., & Hulshoff Pol, H. E. (2009).
    Functionally linked resting‐state networks reflect the underlying structural connectivity
    architecture of the human brain. Human brain mapping, 30(10), 3127-3141.

    Vitacco, D., Brandeis, D., Pascual-Marqui, R., & Martin, E. (2002). Correspondence of
    event-related potential tomography and functional magnetic resonance imaging during
    language processing. Human Brain Mapping, 17, 4–12.

    Von Bastian, C. C., Langer, N., Jäncke, L., & Oberauer, K. (2013). Effects of working
    memory training in young and old adults. Memory & cognition, 41(4), 611-624.

    Wang, K. P., Cheng, M. Y., Chen, T. T., Huang, C. J., Schack, T., & Hung, T. M. (2020).
    Elite golfers are characterized by psychomotor refinement in cognitive-motor
    processes. Psychology of Sport and Exercise, 50, 101739.

    Wang, J., Lu, M., Fan, Y., Wen, X., Zhang, R., Wang, B., ... & Huang, R. (2016). Exploring
    brain functional plasticity in world class gymnasts: a network analysis. Brain Structure
    and Function, 221(7), 3503-3519.

    Wang, Z., Zhang, D., Liang, B., Chang, S., Pan, J., Huang, R., & Liu, M. (2016). Prediction of
    Biological Motion Perception Performance from Intrinsic Brain Network Regional
    Efficiency. Frontiers in Human Neuroscience, 10, 552.

    Whitton, A. E., Deccy, S., Ironside, M. L., Kumar, P., Beltzer, M., & Pizzagalli, D. A. (2018).
    Electroencephalography source functional connectivity reveals abnormal high-frequency
    communication among large-scale functional networks in depression. Biological
    Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(1), 50–58.

    Worrell, G. A., Lagerlund, T. D., Sharbrough, F. W., Brinkmann, B. H., Busacker, N. E.,
    Cicora, K. M., & O’Brien, T. J. (2000). Localization of the epileptic focus by
    low-resolution electromagnetic tomography in patients with a lesion demonstrated by
    MRI. Brain Topography, 12, 273–282.

    Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology:
    Lessons from machine learning. Perspectives on Psychological Science, 12(6),
    1100-1122.

    Zhang, D., & Raichle, M. E. (2010). Disease and the brain’s dark energy. Nature Review
    Neurology, 6, 15–28.

    Zhu, F. F., Maxwell, J. P., Hu, Y., Zhang, Z. G., Lam, W. K., Poolton, J. M., & Masters, R. S.
    (2010). EEG activity during the verbal-cognitive stage of motor skill
    acquisition. Biological psychology, 84(2), 221-227.

    下載圖示
    QR CODE