簡易檢索 / 詳目顯示

研究生: 謝鎧鴻
Hsieh, Kai-Hong
論文名稱: 利用金雞鈉鹼所衍生的催化劑進行有機不對稱催化反應合成具有高鏡像選擇性的茚二酮衍生之螺環化合物
Organocatalytic Enantioselective Synthesis of Indandione-derived Spiro Compounds Using by Cinchona Alkaloid-derived Organocatalysts
指導教授: 林文偉
Lin, Wen-Wei
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 333
中文關鍵詞: 不對稱催化劑金雞鈉鹼反應機構
英文關鍵詞: Asymmety, Catalyst, Cinchona Alkaloids, Mechanism
DOI URL: https://doi.org/10.6345/NTNU202204349
論文種類: 學術論文
相關次數: 點閱:246下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要研究,利用不同的金雞鈉鹼衍生的催化劑進行有機不對稱的催化反應來建構具有高鏡像選擇性的螺環產物。
    第一部分,設計可在反應中同時扮演親核性試劑與親電子性試劑的香豆素衍生物31,與1,3-茚二酮烯類衍生物30進行協同反應 (concerted) 及逐步反應 (stepwise) 行 [3+2] 反應合環,建構單一非鏡像異構物、高鏡像選擇性且具有四個掌性中心的螺環骨架化合物,並利用各種控制實驗,觀察到逆反應的存在以及鏡像超越值的變化,藉此推導其可能的反應機構。
    第二部分,以1,3-茚二酮烯類衍生物 30 與 ,-不飽合酮類 39 進行有機不對稱共價催化反應,建構具有高非鏡像與高鏡像選擇性的螺環骨架的環己酮衍生物 40,且其種一個在環己酮環上 位加成官能基的反式純鏡像螺環骨架衍生物可以差向異構形成熱力學穩定的順式產物,只有些微降低鏡像選擇性,藉此證明了本文所推導的反應機構。
    反應機構會經由兩種互相競爭的反應路徑,一個是Diels−Alder反應,另一個是逐步的Michael加成,藉此形成所對應的產物。

    In my thiesis, the cinchona alkaloid derived organocatalysts were utilized for the synthesis of cyclohexanone and cyclopentanone derivatives via the covalent or non-covalent asymmetric organocatalysis.

    In the first part, a new class of coumarin derivatives, bearing an electrophilic and a nucleophilic site at the same time, have been developed. Cinchona alkaloid-derived chiral hydrogen bonding catalysts were utilized to carry out the [3+2] cyclization of these coumarin derivatives with 2-alkylidene indandiones. The corresponding spiro products bearing four stereocenters, including an all-carbon quaternary center, were obtained as single diastereomers with high enantioselectivity. The Michael addition intermediate was also isolated and a few control experiments have been performed to support the proposed mechanism.

    In second part, a cinchona-alkaloid derived chiral primary-amine-catalyzed enantioselective spirocyclohexanones derivatives is demonstrated. Both the enantiomeric forms of the trans isomer are obtained in excellent yields and enantioselectivities. Mechanistic investigations revealed two competing pathways, a concerted Diels−Alder reaction and a stepwise Michael addition, for the formation of corresponding products.

    簡 歷 II 摘要 III ABSTRACT IV 謝誌 V 目錄 VII 第一章 以新開發的香豆素衍生物進行有機不對稱催化反應經 [3+2] 合環合成具有高鏡像選擇性的螺環化合物 1 1-1前言 1 1-1-1 香豆素介紹 1 1-1-2 香豆素於有機不對稱領域中常見的反應 2 1-2 研究動機 6 1-3實驗結果與討論 8 1-3-1 非掌性催化劑之最佳化 8 1-3-2 掌性催化劑之最佳化 10 1-3-3 溶劑之最佳化 12 1-3-4 催化劑使用量及添加劑之最佳化 14 1-3-5 反應溫度之最佳化 16 1-3-6 取代基變化的影響 17 1-3-6-1 R1 取代基的變化 17 1-3-7 大量化 20 1-3-8 反應機構的探討 21 1-4 結論 25 1-5 實驗部分 26 1-5-1 分析儀器及基本實驗操作 26 1-5-2 反應步驟 28 1-5-3 產物數據 29 1-6 參考文獻 43 第二章 擴展有機不對稱一級胺催化的適用範圍:合成具有高鏡像選擇性的1,3-茚二酮并2,6雙取代反式螺環環己酮 46 2-1 前言 46 2-1-1 有機不對稱共價催化 46 2-2 研究動機 52 2-3實驗結果與討論 54 2-3-1 催化劑的最佳化 54 2-3-2 溶劑的最佳化 56 2-3-3 催化劑與添加劑使用量最佳化 58 2-3-4 添加劑的最佳化 60 2-3-5 溫度與當量的最佳化 64 2-3-6 取代基的變化 66 2-3-6-1 R1 取代基變化 67 2-3-6-2 R2 取代基變化 68 2-3-6-3 嘗試不同親核試劑 72 2-4 具有C2旋轉軸的產物特性 75 2-5 三組分反應並進行大量化 76 2-5-1 三組分反應 76 2-5-2 大量化 77 2-6 反應機構 78 2-7 結論 83 2-8 實驗部分 84 2-8-1 分析儀器及基本實驗操作 84 2-8-2 反應步驟 86 2-8-3 產物數據 88 2-9 參考文獻 120 附錄一 122 附錄二 209 附錄三 255

    第一部分

    1. a) R. D. H. Murray, J. Mendez, R. A. Brown, The Natural Coumarins, John Wiley & Sons, New York, 1982. b) Coumarins: Biology, Applications and Mode of Action, (Eds.: R. O Kennedy, R. D. Thornes), Wiley, New York, 1997. c) J. R. S. Hoult, M. Paya, Gen. Pharmacol. 1996, 27, 713. d) K. C. Fylaktakidou, D. J. Hadjipavlou-Litina, K. E. Litinas, D. N. Nicolaides, Curr. Pharm. Des. 2004, 10, 3813. e) J. Widelski, E. Melliou, N. Fokialakis, P. Magiatis, K. Glowniak, I. Chinou, J. Nat. Prod. 2005, 68, 1637.
    2. a) L. Xie, Y. Takeuchi, L. M. Cosentino, K. H. Lee, J. Med. Chem. 1999, 42, 2662. b) T. Ishikawa, Heterocycles 2000, 53, 453. c) . Xie, Y. Takeuchi, L. M. Cosentino, A. T. McPhail, K. H. Lee, J. Med. Chem. 2001, 44, 664. d) G. Cravotto, G. M. Nano, G. Palmisano, S. Tagliapietra, Tetrahedron: Asymmetry 2001, 12, 707. e) M. Ufer, Clin. Pharmacokinet. 2005, 44, 1227. f) L. E. Visser, R. H. van Schaik, M. van Vliet, P. H. Trienekens, P. A. De Smet, A. G. Vulto, A. Hofman, C. M. van Duijn, B. H. Stricker, Clin. Pharmacol. Ther. 2005, 77, 479. g) X. Cao, W. Lin, Q. Yu, J. Wang, Org. Lett. 2011, 13, 6098. h) M. G. Choi, J. Hwang, J. O. Moon, J. Sung, S.-K. Chang, Org. Lett. 2011, 13, 5260.
    3. For general reviews on asymmetric organocatalysis, see: a) Enantioselective Organocatalysis, (Ed.: P. I. Dalko), Wiley-VCH, Weinheim, 2007. b) D. W. C. MacMillan, Nature 2008, 455, 304. c) E. N. Jacobsen, D. W. C. MacMillan, Proc. Natl. Acad. Sci. USA 2010, 107, 20618.
    4. For reviews on aminocatalysis, see: a) G. Lelais, D. W. C. MacMillan, Aldrichimica Acta 2006, 39, 79. b) S. Mukherjee, J. W. Yang, S. Hoffmann, B. List, Chem. Rev. 2007, 107, 5471. c) P. Melchiorre, M. Marigo, A. Carlone, G. Bartoli, Angew. Chem. Int. Ed. 2008, 47, 6138 d) S. Bertelsen, K. A. Jorgensen, Chem. Commun. 2009, 2178 e) M. Nielsen, D. Worgull, T. Zweifel, B. Gschwend, S. Bertelsen, K. A. Jørgensen, Chem. Commun. 2011, 47, 632.
    5. For selected recent reviews on H-bond catalysis, see: a) S. J. Connon, Chem. Commun. 2008, 2499. b) Y. Takemoto, Chem. Pharm. Bull. 2010, 58, 593. c) W.-Y. Siau, J. Wang, Catal. Sci. Technol. 2011, 1, 1298. d) L.-Q. Lu, X.-L. An, J.-R. Chen, W.-J. Xiao, Synlett 2012, 490; for a review on iminium ion catalysis, see: e) A. Erkkila, I. Majander, P. M. Pihko, Chem. Rev. 2007, 107, 5416.
    6. a) N. Halland, T. Hansen, K. A. Jørgensen, Angew. Chem. Int. Ed. 2003, 42, 4955. b) H. Kim, C. Yen, P. Preston, J. Chin, Org. Lett. 2006, 8, 5239. c) J.-W. Xie, L. Yue, W. Chen, W. Du, J. Zhu, J.-G. Deng, Y.-C. Chen, Org. Lett. 2007, 9, 413. d) T. E. Kristensen, K. Vestli, F. K. Hansen, T. Hansen, Eur. J. Org. Chem. 2009, 5185. e) X.-K. Chen, C.-W. Zheng, S.-L. Zhao, Z. Chai, Y.-Q. Yang, G. Zhao, W.-G. Cao, Adv. Synth. Catal. 2010, 352, 1648. f) D.-Q. Xu, Y.-F. Wang, W. Zhang, S. P. Luo, A.-G. Zhong, A. B. Xia, Z.-Y. Xu, Chem. Eur. J. 2010, 16, 4177. g) Y. Gao, Q. Ren, L. Wang, J. Wang, Chem. Eur. J. 2010, 16, 13068. h) X. Zhu, A. Lin, Y. Shi, J. Guo, C. Zhu, Y. Cheng, Org. Lett. 2011, 13, 4382. i) R. Q. Mei, X. Y. Xu, Y.-C. Li, J.-Y. Fu, Q.-C. Huang, L.-X. Wang, Tetrahedron Lett. 2011, 52, 1566. j) M. Rogozińska, A. Adamkiewicz, J. Mlynarski, Green Chem. 2011, 13, 1155. k) J. Dong, D. M. Du, Org. Biomol. Chem. 2012, 10, 8125. l) M. Leven, J. M. Neudörfl, B. Goldfuss, Beilstein J. Org. Chem. 2013, 9, 155.
    7. Y.-T. Lee, U. Das, Y.-R. Chen, C.-J. Lee, C.-H. Chen, M.-C. Yang, W. Lin, Adv. Synth. Catal. 2013, 355, 3154.
    8. I. R. Pottie, P. R. Nandaluru, W. L. Benoit, D. O. Miller, L. N. Dawe, G. J. Bodwell, J. Org. Chem. 2011, 76, 9015.
    9. a) B. L. Feringa, Acc. Chem. Res. 2000, 33, 346. b) A. W. Hird, A. H. Hoveyda, J. Am. Chem. Soc. 2005, 127, 14988. c) M. d’Augustin, L. Palais, A. Alexakis, Angew. Chem. Int. Ed. 2005, 44, 1376 d) R. Shintani, Y. Tsutsumi, M. Nagaosa, T. Nishimura, T. Hayashi, J. Am. Chem. Soc. 2009, 131, 13588. e) Y. Tanaka, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2010, 132, 8862. f) C. Mazet, E. N. Jacobsen, Angew. Chem. Int. Ed. 2008, 47, 1762. g) X. Feng, J. Yun, Chem. Eur. J. 2010, 16, 13609. h) D. Zhao, L. Mao, L. Wang, D. Yang, R. Wang, Chem. Commun. 2012, 48, 889. i) K. Kikushima, J. C. Holder, M. Gatti, B. M. Stoltz, J. Am. Chem. Soc. 2011, 133, 6902.
    10. a) M. D. Pierce, R. C. Johnston, S. Mahapatra, H. Yang, R. G. Carter, P. H.-Y. Cheong, J. Am. Chem. Soc. 2012, 134, 13624. b) L.-Y. Wu, G. Bencivenni, M. Mancinelli, A. Mazzanti, G. Bartoli, P. Melchiorre, Angew. Chem. Int. Ed. 2009, 48, 7196. c) G. Bencivenni, L.-Y. Wu, A. Mazzanti, B. Giannichi, F. Pesciaioli, M.-P. Song, G. Bartoli, P. Melchiorre, Angew. Chem. Int. Ed. 2009, 48, 7200.
    11. D. Bastida, Y. Liu, X. Tian, E. Escudero-Adan, and P. Melchiorre, Org. Lett., 2013, 15, 220.
    12. D. Yang, L. Wang, F. Han, D. Zhao, B. Zhang, and R. Wang, Angew. Chem., Int. Ed. 2013, 52, 6739.
    13. L. Möhlmann, G.-H. Chang, G. M. Reddy, C.-J. Lee, and W. Lin, Org. Lett., 2016, 18, 688.

    第二部分

    1. For reviews on non-cinchona alkaloid derived chiral primary amine based organocatalysis, see (a) F. Peng, Z. J. Shao, Molecular Catalysis A: Chemical 2008, 285, 1. (b) L.-W. Xu, J. Luo, Y. Lu, Chem. Commun. 2009, 1807. (c) O. V. Serdyuk, C. M. Heckel, S. B. Tsogoeva, Org. Biomol. Chem. 2013, 11, 7051. (d) L. Zhang, S. Luo, Synlett, 2012, 1575. (e) Z. Chai, G. Zhao, Catal. Sci. Technol. 2012, 2, 29.
    2. (a) U. Scheffler, R. Mahrwald, Synlett 2011, 1660. (b) B. List, Tetrahedron 2002, 58, 5573. (c) K. L. Jensen, G. Dickmeiss, H. Jiang, L. Albrecht, K. A. Jørgensen, Acc. Chem. Res. 2012, 45, 248. d) S. Mukherjee, J. W. Yang, S. Hoffmann, B. List, Chem. Rev. 2007, 107, 5471.
    3. (a) G. Lelais, D. W. C. MacMillan, Aldrichimica Acta 2006, 39, 79-87. (b) M. M. Heravi, V. Zadsirjan, Tetrahedron: Asymmetry 2013, 24, 1149.
    4. For representative reviews on cinchona alkaloid derived primary amine catalysis, see: (a) P. Melchiorre, Angew. Chem. Int. Ed. 2012, 51, 9748. (b) J. Duan, P. Li, Catal. Sci. Technol. 2014, 4, 311. (c) L. Jiang, Y.-C. Chen, Catal. Sci. Technol. 2011, 1, 354. (d) Y.-C. Chen, Synlett, 2008, 12, 1919. (e) G. Bartoli, P. Melchiorre, Synlett, 2008, 12, 1759.
    5. L.-Y. Wu, G. Bencivenni, A. Mazzanti, G. Bartoli, P. Melchiorre, Angew. Chem. Int. Ed. 2009, 48, 7196.
    6. R. Thayumanavan, B. Dhevalapally, K. Sakthivel, F. Tanaka, C. F. Barbas III, Tetrahedron Lett. 2002, 43, 3817.
    7. For an outlook on our group’s efforts towards developing cinchona alkaloid-derived primary amine catalysis, see (a) U. Das, C.-H. Huang, W. Lin, Chem. Commun. 2012, 48, 5590. (b) Y.-T. Lee; U. Das, Y.-R. Chen, C.-J. Lee, C.-H. Chen, M.-C. Yang, W. Lin, Adv. Synth. Catal. 2013, 355, 3154.
    8. (a) D. B. Ramachary, K. Anebouselvy, N. S. Chowdari, C. F. Barbas III, J. Org. Chem. 2004, 69, 5838. (b) D. B. Ramachary, N. S. Chowdari, C. F. Barbas III, Synlett. 2003, 1910.
    9. N.-H. Luo, X. Sun, W.-T. Wei, X.-J. Zhang, M. Yan, Tetrahedron: Asymmetry 2013, 24, 402.
    10. S. Anwar, S. M. Li, K. Chen, Org. Lett. 2014, 16, 2993.
    11. H.-H. Kuan, C.-H. Chien, K. Chen, Org. Lett. 2013, 15, 2880.
    12. D. B. Ramachary, C. Venkaiah, P. M. Krishna, Chem. Commun. 2012, 48, 2252.
    13. B. Bredenkotter, B. Neumann, H.-G. Stammler, D. Kuck, Eur. J. Org. Chem. 2014, 53.
    14. P. S. Silaichev, V. O. Filimonov, P. A. Slepukhin, M. Rubin, A. N. Maslivets, Eur. J. Org. Chem. 2015, 2739.
    15. W. Hoeve, H. Wynberg, J. Org. Chem. 1979, 44, 1508.
    16. D. Pizzirani, M. Roberti, M. Recanatini, Tetrahedron Lett. 2007, 48, 7120.
    17. (a) J. Shi, Y. Liu, M. Wang, L. Lin, X. Liu, X. Feng, Tetrahedron 2011, 67, 1781. (b) D. B. Ramachary, N. S. Chowdari, C. F. Barbas III, Angew. Chem. Int. Ed.. 2003, 42, 4233. (c) G. Bencivenni, L.-Y. Wu, A. Mazzanti, B. Giannichi, F. Pesciaioli, M.-P. Song, G. Bartoli. P. Melchiorre, Angew. Chem. Int. Ed. 2009, 48, 7200. (d) D. Cheng, Y. Ishihara, B. Tan, C. F. Barbas III, ACS Catal. 2014, 4, 743. (e) D. B. Ramachary, C. F. Barbas III, Org. Lett. 2005, 7, 1577.
    18. D. Pizzirani, M. Roberti, S. Grimaudo, A. D. Cristina, R. M. Pipitone, M. Tolomeo, M. Recanatini, J. Med. Chem. 2009, 52, 6936.
    19. The absolute configurations of trans-40ca, trans-57cca and cis-71ca, cis-72aca were established by X-ray crystallography.
    20. A. T. Rowland, S. A. Filla, M. L. Coutlangus, M. D. Winemiller, M. J. Chamberlin, G. Czulada, S. D. Johnson, J. Org. Chem. 1998, 63, 4359.

    下載圖示
    QR CODE