研究生: |
余立安 Yu, Li-An |
---|---|
論文名稱: |
基於機器視覺與次像素邊緣偵測於LED探針之自動化檢測系統 Auto-inspected System for LED Probes Based on Machine Vision and Sub-pixel Edge Detection |
指導教授: |
蘇崇彥
Su, Chung-Yen |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 機器視覺 、次像素邊緣偵測 、自動化檢測 、影像處理 |
英文關鍵詞: | machine vision, sub-pixel edge detection, autonatic inspection, image processing |
DOI URL: | https://doi.org/10.6345/NTNU202202688 |
論文種類: | 學術論文 |
相關次數: | 點閱:190 下載:15 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
LED (light-emitting diode,發光二極體)從原先做為電子裝置的指示燈使用,如今已被廣泛的應用在工作或一般用途的照明上;而LED需要由LED探針做燈泡特性的量測,以篩選出LED的好壞,因此越來越多LED探針被大量地生產。本論文的研究目的就是提出一套自動的光學檢測系統,以提升LED探針的品質,提高生產效率,降低不良品的產出,並能夠即時回饋產品的資訊,而檢測的流程則使用許多機器視覺與影像處理的技術,包含運用Otsu門檻值搭配Canny的邊緣檢測得到初步的邊緣位置、次像素邊緣檢測取得更精確的邊緣位置、以及物件分群等方法,以提升量測的準確度,最後可以控制探針角度誤差在1%而半徑誤差在2%左右,並且提出一套能夠精準的區分出有瑕疵探針的方法,實驗證明本論文所提出的方法能夠快速且精準的分析LED探針的尺寸以及好壞。
In the beginning, LEDs (light-emitting diode) were used as indicator lamps for electronic devices, and nowadays LEDs have been widely utilized in general lighting devices[1]. To test the quality of LEDs, more and more LED probes are required. In this paper, the efficiency of autonatic optical inspection system has been proposed. The proposed process is able to ensure high-quality of LED probes, improve the efficiency of production, reduce the output of defective products and feedback information of products in time. The detection framework use wide image processing, consists of Otsu threshold and Canny edge detection to get coarse edge, sub-pixel edge detection, object extraction, i.e. The proposed method can quickly and accurately analyze the size of LED probes whose angle error about 1% and radius error about 2%. The experimental results verify the effectiveness of our methods.
[1] LED燈泡參閱自維基百科全書
https://en.wikipedia.org/wiki/Light-emitting_diode
[2] 2016年全球LED市場發展趨勢與挑戰https://www.materialsnet.com.tw/DocPrint.aspx?id=24198
[3] 智慧型自動化產業發展推動計畫。經濟部工業局https://webapp.yuntech.edu.tw/YunTechSSO/IdssBulletin/Attachment?attachId=0000000000131290
[4] 行政院生產力4.0發展方案。行政院http://www.bost.ey.gov.tw/Upload/UserFiles/%E8%A1%8C%E6%94%BF%E9%99%A2%E7%94%9F%E7%94%A2%E5%8A%9B4_0%E7%99%BC%E5%B1%95%E6%96%B9%E6%A1%88.pdf
[5] W. C. Wang, L. B. Chen, W. J. Chang, S. L. Chen, S. M. Katherine, “A Machine Vision Based Automatic Optical Inspection System for Measuring Drilling Quality of Printed Circuit Boards,” in IEEE Access, Nov. 2016.
[6] O. Semeniuta, S. Dransfeld, P. Falkman, “Vision-based robotic system for picking and inspection of small automotive components,” in IEEE International Conference On Automation Science and Engineering, Aug. 2016.
[7] A. V. Pise, Y. H. Dandawate, “Automated keypad inspection by image registration using hough transform based perimeter extraction and multilevel pyramids,” Conference On Advances in Sigmal Processing, Jun. 2016.
[8] H. H. Wu, H. Y. Guo, “Automatic Optical Inspection for steel golf club,” in IEEE International Conference On Fuzzy Systems and Knowledge Discovery, vol. 12, Aug. 2015.
[9] J. Li, Y. Huang, “Automatic inspection of tire geometry with machine vision,” in IEEE International Conference On Mechatronics and Automation, Aug. 2015.
[10] S. Yammen, P. Muneesawang, “An Advanced Vision System for the Automatic Inspection of Corrosions on Pole Tips in Hard Disk Drives,” in IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 4, 2014, pp.1523-1533.
[11] S. S. Martínez, J. G Ortega, A. S.García, J. G. García, “An adaptable vision system for the automatic inspection of surface defects in automotive headlamp lenses,” In IEEE Conference on Automation Science and Engineering (CASE), 2011, pp. 157-162.
[12] 黃國書,”晶粒圖文瑕疵之自動檢測”,國立交通大學工業工程與管理學系碩士論文,2010
[13] 陳賢義,”視覺技術在線上檢測之應用”,自動化感測技術專輯,機械工業雜誌6月號,1993,pp.267-279
[14] 梁有燈,”機器視覺在BGA銲球尺寸量測上之應用”,中華大學機械與航太工程研究所碩士論文,2001
[15] 廖彥凱,”動態取像下之特徵辨識於自動檢測系統之研究”,國立成功大學機械工程學系碩士論文,2014
[16] A. Fabijańska, “A Survey of Subpixel Edge Detection Methods for Images of Heat-emitting Metal Specimens,” International Journal of Applied Mathematics and Computer Science, vol. 22, no. 3, 2012, pp. 695-710.
[17] A. Trujillo-Pino, K. Krissian, M. Alemán-Flores, D. Santana-Cedrés, “Accurate subpixel edge location based on partial area effect,” Image and Vision Computing, vol. 31, no. 1, Jan. 2013, pp. 72–90.
[18] N. K. Chen, J. J. Wang, L. A. Yu, C. Y. Su, “Sub-pixel Edge Detection of LED Probes Based on Scharr Edge Detection and Adaptive Reconstruction”, Conference On Computer Vision, Graphics, and Image Processing (CVGIP), 2014.
[19] L. A. Yu, N. K. Chen, J. J. Wang, Y H Liu, C Y Su, “A Hybrid Subpixel Edge Detection Based Method for LED Probe Measurement,” AUTOMATION 2015, Taipei, Taiwan, Nov. 13-15, 2015, pp. 619-622.
[20] 柳英浩,”基於電腦視覺之LED探針線上自動化量測系統平台”,國立臺灣師範大學電機工程學系碩士論文,2016
[21] N. Q. Chen, J. J. Wang, L. A. Yu, and C. Y. Su, “Sub-pixel Edge Detection of LED Probes Based on Canny Edge Detection and Iterative Curve Fitting,” in Proc. IEEE International Symposium on Computer, Consumer and Control, Taichung, 2014, pp. 131-134.
[22] C. Y. Su, L. A. Yu, N. Q. Chen, J. J. Wang, Y. H. Liu, S. D. Wu, “Sub-pixel Edge Detection of LED Probes based on Partial Area Effect,” Proc. International Conference on Industrial Networks and Intelligent Systems, 2015, pp. 1-6.
[23] N. Otsu, “A Threshold Selection Method from Gray-Level Histograms,” in IEEE Trans. System, Man and Cybernetics, vol. 9, no. 1, 1979, pp.62-66.
[24] DFK 72AUC02 USB 2.0 彩色工業相機https://www.theimagingsource.tw/%E7%94%A2%E5%93%81/%E5%B7%A5%E6%A5%AD%E7%9B%B8%E6%A9%9F/usb-2.0-%E5%BD%A9%E8%89%B2/dfk72auc02/
[25] Moritex ML-Z07545系列
http://moritex.com/model/1-1-1-3-4-01.html
[26] SGSP Series Translation Motorized Stages 產品系列
https://www.global-optosigma.com/en_jp/Catalogs/gno/?from=page&pnoname=SGSP20-(X)&ccode=W9011&dcode=&gnoname=SGSP20-35(X)
[27] Single axis stage controller GSC-01
https://www.global-optosigma.com/en/page_pdf/GSC-01.pdf
[28] J. F. Canny. “A computational approach to edge detection,” in IEEE Transactions on Pattern Analysis and Machine Intelligence. vol. 8, no. 6, 1986, pp. 679-698.
[29] S. Lafuente-Arroyo, et al. "Traffic sign shape classification evaluation I: SVM using distance to borders," IEEE Intelligent Vehicles Symposium, Jun. 2005, pp. 557-562.