簡易檢索 / 詳目顯示

研究生: 林襄廷
Lin, Hsiang-Ting
論文名稱: 掃描式穿隧電流顯微鏡與蛋白質形貌與結構變異分析
指導教授: 王忠茂
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 57
中文關鍵詞: 掃描式穿隧電流顯微鏡蛋白質形貌與結構變異分析
DOI URL: https://doi.org/10.6345/NTNU202204053
論文種類: 學術論文
相關次數: 點閱:118下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用掃描式穿隧電流顯微鏡(Scanning Tunneling Microscopy,簡稱STM)探討鐵蛋白吸附於高定向裂解石墨(Highly Oriented Pyrolytic Graphite,簡稱HOPG)之表面結構,測量其於氫氧化鈉及鹽酸溶液中變質,逐漸改變結構之影像,藉以建立蛋白質岐化與形貌變異關聯性。結果顯示:鐵蛋白經氫氧化鈉溶液處理後表面形貌會逐漸變異,其寬度增大而高度降低,並且顯現塌陷現象。我們也對鹽酸的影響進行探討,發現經由鹽酸處理,鐵蛋白也顯現類似變化,但結構不會呈現塌陷。根據這些結果,我們認為STM具有作為研究蛋白質結構變異之分析方法。

    In this thesis, we use scanning tunneling microscopy (STM) to investigate structural changes of proteins during denauration. Ferritin (FT) is a global protein, responsible for iron regulation in biosystems. Because of its spherical structure, we use it as a model protein to monitor any changes in surface structure as adsorbed on HOPG when exposed to basic and acidic reagents, such as 1 M NaOH and 1 M HCl. Experimental results show that in NaOH, the surface morphology of FT changes gradually with immersion time, in which the height decreases from 0.430 to 0.345 nm, but the width increases from 15.240 to 19.538 nm. Besides, the center of the FT shows indentation phenomenon, contrasting to the results found in HCl solutions. Accordingly, we consider STM a useful tool for surface analysis of proteins.

    致謝 I 圖目錄 III 表目錄 IX 摘要 i Abstract ii 第一章 緒論 2 第二章 實驗 5 2.1 化學藥品 5 2.2 實驗設備 5 2.3 鐵蛋白修飾電極:前處理與製備 6 2.4 掃描式穿隧顯微鏡操作步驟 6 2.5 原子力顯微鏡操作步驟 8 第三章 實驗結果與討論 12 3.1 鐵蛋白之掃描式電子穿隧顯微鏡(STM)分析 12 3.2 鐵蛋白之原子力顯微鏡(AFM)分析 19 3.3 鐵蛋白之導電模組(C-AFM)影像分析 22 3.4 蛋白質變性結構分析 24 第四章 結論 32 第五章 未來展望 33 參考文獻 34 附錄 36

    1. 何如紘,國立臺灣師範大學化學系碩士論文,2010,原子力顯微鏡場效應鐵蛋白影像分析。
    2. 陳俞宏,國立臺灣師範大學化學系碩士論文,2011,磁性模組原子力顯微鏡掃瞄技術對磁性微粒影像分析之探討。
    3. 張家偉,國立臺灣師範大學化學系碩士論文,2012,原子力顯微術應用:鐵蛋白結構變異分析。
    4. P. M. Harrison; P. Arosio, Biochim. Biophys. Acta. 1996, 1275, 161.
    5. W. Wang; M. A. Knovich; L. G. Coffman; F. M. Torti; S. V. Torti, Biochim. Biophys. Acta. 2010, 1800, 760.
    6. M. A. Knovich; J. A. Storey; L. G. Coffman; S. V. Torti; F. M. Torti, Blood Rev. 2009, 23, 95.
    7. S. Ohnishi; M. Hara; T. Furuno; H. Sasabe, Biophys. J. 1992, 63, 1425.
    8. S. Ohnishi; M. Hara; T. Furuno; T. Okada; H. Sasabe, Biophys. J. 1993, 65, 573.
    9. A. Perrin; V. Lanet; A. Theretz, Langmuir. 1997, 13, 2557.
    10. D. Xu; G. D. Watt; J. N. Harb; R. C. Davis, Nano Lett. 2005, 5, 571.
    11. D. N. Axford; J. J. Davis, Nanotechnology. 2007, 18, 145502.
    12. T. Rakshit; S. Banerjee; R. Mukhopadhyay, Langmuir. 2010, 26, 16005.
    13. A. Mosca; R. Paleari; P. Arosio; A. Cricenti; M. A. Scarselli; R. Generosi; S. Selci; E. Rovida, J. Vac. Sci. Technol. 1994, 12, 1486.
    14. C. Baier; U. Stimming, Angew. Chem. 2009, 48, 5542.
    15. C.W. Hsieh; B. Zheng; S. Hsieh, Chem. Commun. 2010, 46, 1655.
    16. F. Caruso; D. N. Furlong; P. Kingshott, J. Colloid. Interface. Sci. 1997, 186, 129.
    17. E. Manning; S. T. Yau, J. Vac. Sci. Technol. 2005, 23, 2309
    18. J. M. Domínguez-Vera; L. Welte; N. Gálvez; B. Fernández; J. Gómez-Herrero; F. Zamora, Nanotechnology. 2008, 19, 025302.
    19. M. Tominaga; K. Soejima; M. Matsumoto; I. Taniguchi, J. Electroanal. Chem. 2005, 579, 51.
    20. A. G. Hemmersam; K. Rechendorff; F. Besenbacher; B. Kasemo; D. S. Sutherland, J. Phys. Chem. C. 2008, 112, 4180.
    21. M. Preisinger; M. Krispin; T. Rudolf; S. Horn; D. R. Strongin, Phys. Rev. 2005, 71, 165409.
    22. R. V. Martinez; M. Chiesa; R. Garcia, Small. 2011, 7, 2914.
    23. B. J. Kim; Y. KO; J. H. Cho; J. Cho, Small. 2013, 9, 3784.
    24. 黃祥盈,國立臺灣師範大學化學系碩士論文,2009,類黃核素修飾電極製備及其與蛋白質間的交互作用探討。
    25. H. Rafii-Tabar, Computational Physics of Carbon Nanotubes Cambridge University Press, New York, 2008.
    26. Q. Chi; J. Zhang; J. U. Nielsen; I. Friis; E. P. Chorkendorff; G. W. Canters; J. E. T. Andersen; J. J. Ulstrup, Am. Chem. Soc. 2000, 122, 4047.
    27. D. Alliata; L. Andolfi; S. Cannistraro, Ultramicroscopy. 2004, 101, 231.

    下載圖示
    QR CODE