簡易檢索 / 詳目顯示

研究生: 黃柏文
Huang, Po-Wen
論文名稱: Rab18負調節產後母鼠腦中多巴胺進而誘導其成年神經元新生與育幼行為
Rab18 Negatively Regulates Dopamine to Induce Adult Neurogenesis and Maternal Behaviors in Postpartum Mice
指導教授: 王慈蔚
Wang, Tsu-Wei
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 79
中文關鍵詞: Rab18成年神經元新生多巴胺育幼行為
英文關鍵詞: Rab18, adult neurogenesis, dopamine, maternal behaviors
DOI URL: http://doi.org/10.6345/THE.NTNU.SLS.017.2018.D01
論文種類: 學術論文
相關次數: 點閱:118下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 成年神經元新生的現象會發生在成年哺乳類動物腦中的兩個區域。在側腦室下區中,神經幹細胞會產生神經母細胞並沿著Rostral migratory stream(RMS)遷移到嗅球並分化成成熟神經元,在嗅球的成年神經元新生功能為辨別氣味和育幼行為。在齒狀迴顆粒細胞下區中,神經幹細胞會產生神經母細胞,它們接著分化成海馬迴齒狀迴中的神經元,齒狀迴的成年神經元新生功能為抗焦慮以及依賴海馬迴的學習和記憶。Rab18是Rab蛋白中的其中一員,屬於Ras相關的小GTP水解酶家族。先前,我們發現Rab18基因剔除母鼠的成年神經元新生有缺陷且其育幼行為是受損的。除此之外,在產後母鼠中,我們還發現Rab18會負調節多巴胺的分泌並且正調節催乳素的濃度。因此,我們假設Rab18透過抑制多巴胺和增加催乳素來調節成年神經元新生和育幼行為。我們給Rab18基因剔除處女鼠注射多巴胺D2受體的拮抗劑haloperidol (HAL),並透過OB / DG神經元新生去測試我們的假設。在我們初步的結果中,發現當Rab18基因剔除處女鼠注射HAL後,側腦室下區中的增殖細胞和神經母細胞會恢復到與野生型處女鼠一樣的程度。同時,當我們將Rab18基因剔除處女鼠注射HAL之後,齒狀迴顆粒細胞下區中的增殖細胞、神經母細胞及神經元也會恢復到與野生型處女鼠一樣的程度。因此,Rab18會透過抑制多巴胺的釋放,進而調節在側腦室下區中的增殖細胞和神經母細胞以及齒狀迴顆粒細胞下區中的增殖細胞、神經母細胞及齒狀迴中的神經元。此外,我們在Rab18基因剔除懷孕鼠注射HAL後,去測試成年神經元新生、育幼行為、氣味辨識和抗焦慮行為能否回復到與野生型產後鼠一樣的狀態。我們發現在Rab18基因剔除懷孕鼠注射HAL後,側腦室下區中的增殖細胞和神經母細胞會恢復到與野生型產後鼠一樣的程度,並且齒狀迴顆粒細胞下區中的神經幹細胞、增殖細胞及神經元也會恢復到與野生型產後鼠一樣的程度,我們也發現到Rab18基因剔除懷孕鼠注射HAL後,氣味辨識並不會恢復到與野生型產後鼠一樣的程度,而焦慮行為並未在Rab18基因剔除產後鼠及野生型產後鼠中發現有任何差異。所以,Rab18會透過抑制多巴胺的釋放,進而調節在側腦室下區中的增殖細胞和神經母細胞以及齒狀迴顆粒細胞下區中的增殖細胞、神經幹細胞及齒狀迴中的神經元。除此之外,Rab18可能會透過抑制多巴胺的的釋放去調節育幼行為並且Rab18對於氣味辨識是必需的。在未來,我們將繼續研究Rab18如何去調節懷孕鼠中的育幼行為及氣味辨識。

    There are two places in the mammalian brain with adult neurogenesis. In the subventricular zone (SVZ) of the lateral ventricles, neural stem cells produce neuroblasts, which migrate along the rostral migratory stream (RMS) to the olfactory bulb (OB) and differentiate into mature neurons. The function of adult OB neurogenesis is odor discrimination and maternal behaviors. Neural stem cells of the subgranular zone (SGZ) in the dentate gyrus (DG) generate progenitor cells, which give rise to neurons in the DG of the hippocampus. The function of adult DG neurogenesis is anti-depression and hippocampal-dependent learning and memory. Rab18 is a member of Rab proteins, which belong to Ras-related superfamily of small GTPase. Previously, we find that Rab18 homozygous mutation mice (Rab18-/-) have defective adult neurogenesis and impaired maternal behaviors. In addition, we also discover that Rab18 negatively regulates dopamine secretion and positively regulates prolactin concentration in postpartum female mice. Therefore, we hypothesize that Rab18 regulates adult neurogenesis and maternal behaviors through inhibiting dopamine and increasing prolactin. To test it, Rab18-/- virgin female mice were treated with dopamine D2 receptor (D2Rs) antagonist haloperidol (HAL) and OB/DG neurogenesis was examined. We found that proliferating cells and neuroblasts in the SVZ were rescued when Rab18-/- virgin female mice were injected with HAL. Furthermore, proliferating cells and neuroblasts in the SGZ and neurogenesis in the DG were rescued in Rab18-/- virgin mice with HAL injection. In conclusion, Rab18 regulates proliferating cells and neuroblasts in the SVZ by inhibition of dopamine in virgin mice. Moreover, Rab18 regulates proliferating cell, neuroblast and neuron numbers in the SGZ/DG by inhibition of dopamine in virgin mice. In postpartum mice, Rab18 was required for neural stem cells in the SVZ and dopamine inhibited adult AOB neurogenesis. Furthermore, Rab18 regulated adult DG neurogenesis, the maintenance of neural stem cells in the SGZ, proliferating cells in the SVZ and SGZ and the production of neuroblasts in the SVZ through inhibition of dopamine in postpartum mice. In addition, we found that Rab18 might regulate maternal behaviors through inhibition of dopamine and it was required for odor discrimination, but not through inhibition of dopamine in postpartum mice. In the future, we will continue to study how Rab18 regulates maternal behaviors and odor discrimination in postpartum mice.

    Chinese Abstract 4 English Abstract 6 Introduction 8 Materials and Methods 16 Result 21 Discussion 38 Figures 41 References 69

    1. Leuner, B. and S. Sabihi, The birth of new neurons in the maternal brain: Hormonal regulation and functional implications. Front Neuroendocrinol, 2016. 41: p. 99-113.
    2. Ming, G.L. and H. Song, Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron, 2011. 70(4): p. 687-702.
    3. Altman, J. and G.D. Das, Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol, 1965. 124(3): p. 319-35.
    4. Imayoshi, I., et al., Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci, 2008. 11(10): p. 1153-61.
    5. Sakamoto, M., et al., Continuous neurogenesis in the adult forebrain is required for innate olfactory responses. Proc Natl Acad Sci U S A, 2011. 108(20): p. 8479-84.
    6. Keller, M. and F. Levy, The main but not the accessory olfactory system is involved in the processing of socially relevant chemosignals in ungulates. Front Neuroanat, 2012. 6: p. 39.
    7. Mucignat-Caretta, C., M. Redaelli, and A. Caretta, One nose, one brain: contribution of the main and accessory olfactory system to chemosensation. Front Neuroanat, 2012. 6: p. 46.
    8. Doetsch, F. and R. Hen, Young and excitable: the function of new neurons in the adult mammalian brain. Curr Opin Neurobiol, 2005. 15(1): p. 121-8.
    9. Oboti, L., et al., Integration and sensory experience-dependent survival of newly-generated neurons in the accessory olfactory bulb of female mice. Eur J Neurosci, 2009. 29(4): p. 679-92.
    10. Nunez-Parra, A., V. Pugh, and R.C. Araneda, Regulation of adult neurogenesis by behavior and age in the accessory olfactory bulb. Mol Cell Neurosci, 2011. 47(4): p. 274-85.
    11. Veyrac, A. and J. Bakker, Postnatal and adult exposure to estradiol differentially influences adult neurogenesis in the main and accessory olfactory bulb of female mice. FASEB J, 2011. 25(3): p. 1048-57.
    12. Nagayama, S., R. Homma, and F. Imamura, Neuronal organization of olfactory bulb circuits. Front Neural Circuits, 2014. 8: p. 98.
    13. Sakamoto, M., R. Kageyama, and I. Imayoshi, The functional significance of newly born neurons integrated into olfactory bulb circuits. Front Neurosci, 2014. 8: p. 121.
    14. Shingo, T., et al., Pregnancy-stimulated neurogenesis in the adult female forebrain mediated by prolactin. Science, 2003. 299(5603): p. 117-20.
    15. Mak, G.K., et al., Male pheromone-stimulated neurogenesis in the adult female brain: possible role in mating behavior. Nat Neurosci, 2007. 10(8): p. 1003-11.
    16. Larsen, C.M. and D.R. Grattan, Prolactin-induced mitogenesis in the subventricular zone of the maternal brain during early pregnancy is essential for normal postpartum behavioral responses in the mother. Endocrinology, 2010. 151(8): p. 3805-14.
    17. Mak, G.K. and S. Weiss, Paternal recognition of adult offspring mediated by newly generated CNS neurons. Nat Neurosci, 2010. 13(6): p. 753-8.
    18. Larsen, C.M. and D.R. Grattan, Exposure to female pheromones during pregnancy causes postpartum anxiety in mice. Vitam Horm, 2010. 83: p. 137-49.
    19. Kippin, T.E., S. Kapur, and D. van der Kooy, Dopamine specifically inhibits forebrain neural stem cell proliferation, suggesting a novel effect of antipsychotic drugs. J Neurosci, 2005. 25(24): p. 5815-23.
    20. Singec, I., et al., The rostral migratory stream generates hippocampal CA1 pyramidal-like neurons in a novel organotypic slice co-culture model. Biol Open, 2015. 4(10): p. 1222-8.
    21. Yu, D.X., M.C. Marchetto, and F.H. Gage, How to make a hippocampal dentate gyrus granule neuron. Development, 2014. 141(12): p. 2366-75.
    22. Leuner, B., et al., Temporal discontiguity is neither necessary nor sufficient for learning-induced effects on adult neurogenesis. J Neurosci, 2006. 26(52): p. 13437-42.
    23. Sahay, A. and R. Hen, Adult hippocampal neurogenesis in depression. Nat Neurosci, 2007. 10(9): p. 1110-5.
    24. Mendez-David, I., et al., S 47445 Produces Antidepressant- and Anxiolytic-Like Effects through Neurogenesis Dependent and Independent Mechanisms. Front Pharmacol, 2017. 8: p. 462.
    25. Ryu, S., et al., Hericium erinaceus Extract Reduces Anxiety and Depressive Behaviors by Promoting Hippocampal Neurogenesis in the Adult Mouse Brain. J Med Food, 2017.
    26. Sun, L., Q. Sun, and J. Qi, Adult hippocampal neurogenesis: an important target associated with antidepressant effects of exercise. Rev Neurosci, 2017. 28(7): p. 693-703.
    27. Malberg, J.E., et al., Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci, 2000. 20(24): p. 9104-10.
    28. Duman, R.S., S. Nakagawa, and J. Malberg, Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology, 2001. 25(6): p. 836-44.
    29. Santarelli, L., et al., Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 2003. 301(5634): p. 805-9.
    30. Champagne, F.A. and M.J. Meaney, Stress during gestation alters postpartum maternal care and the development of the offspring in a rodent model. Biol Psychiatry, 2006. 59(12): p. 1227-35.
    31. Champagne, F.A. and M.J. Meaney, Transgenerational effects of social environment on variations in maternal care and behavioral response to novelty. Behav Neurosci, 2007. 121(6): p. 1353-63.
    32. Fleming, A.S. and J.S. Rosenblatt, Olfactory regulation of maternal behavior in rats. I. Effects of olfactory bulb removal in experienced and inexperienced lactating and cycling females. J Comp Physiol Psychol, 1974. 86(2): p. 221-32.
    33. Fleming, A., et al., Vomeronasal and olfactory system modulation of maternal behavior in the rat. Science, 1979. 203(4378): p. 372-4.
    34. Carretero, M.I., et al., Bicuculline infusion into the accessory olfactory bulb facilitates the induction of maternal behavior in rats. Scand J Psychol, 2003. 44(3): p. 273-7.
    35. Mayer, A.D. and J.S. Rosenblatt, Prepartum changes in maternal responsiveness and nest defense in Rattus norvegicus. J Comp Psychol, 1984. 98(2): p. 177-88.
    36. Wamboldt, M.Z. and T.R. Insel, The ability of oxytocin to induce short latency maternal behavior is dependent on peripheral anosmia. Behav Neurosci, 1987. 101(3): p. 439-41.
    37. Gandelman, R., et al., Olfactory bulb removal eliminates maternal behavior in the mouse. Science, 1971. 171(3967): p. 210-1.
    38. Vandenbergh, J.G., Effects of central and peripheral anosmia on reproduction of female mice. Physiol Behav, 1973. 10(2): p. 257-61.
    39. Gonzalez-Mariscal, G., Neuroendocrinology of maternal behavior in the rabbit. Horm Behav, 2001. 40(2): p. 125-32.
    40. Oboti, L., et al., Newborn interneurons in the accessory olfactory bulb promote mate recognition in female mice. Front Neurosci, 2011. 5: p. 113.
    41. Sultan, S., et al., Acquisition of an olfactory associative task triggers a regionalized down-regulation of adult born neuron cell death. Front Neurosci, 2011. 5: p. 52.
    42. Larsen, C.M. and D.R. Grattan, Prolactin, neurogenesis, and maternal behaviors. Brain Behav Immun, 2012. 26(2): p. 201-9.
    43. Chamley, W.A., et al., Changes in the levels of progesterone, corticosteroids, estrone, estradiol-17 beta, luteinizing hormone, and prolactin in the peripheral plasma of the ewe during late pregnancy and at parturition. Biol Reprod, 1973. 9(1): p. 30-5.
    44. Grattan, D.R., The actions of prolactin in the brain during pregnancy and lactation. Prog Brain Res, 2001. 133: p. 153-71.
    45. Torner, L. and I.D. Neumann, The brain prolactin system: involvement in stress response adaptations in lactation. Stress, 2002. 5(4): p. 249-57.
    46. Millar, R.P., et al., Hypothalamic-Pituitary-Ovarian Axis Reactivation by Kisspeptin-10 in Hyperprolactinemic Women With Chronic Amenorrhea. J Endocr Soc, 2017. 1(11): p. 1362-1371.
    47. Macbeth, A.H. and V.N. Luine, Changes in anxiety and cognition due to reproductive experience: a review of data from rodent and human mothers. Neurosci Biobehav Rev, 2010. 34(3): p. 452-67.
    48. Workman, J.L., C.K. Barha, and L.A. Galea, Endocrine substrates of cognitive and affective changes during pregnancy and postpartum. Behav Neurosci, 2012. 126(1): p. 54-72.
    49. Duarte-Guterman, P., et al., Hippocampal learning, memory, and neurogenesis: Effects of sex and estrogens across the lifespan in adults. Horm Behav, 2015. 74: p. 37-52.
    50. Jaber, M., et al., Dopamine receptors and brain function. Neuropharmacology, 1996. 35(11): p. 1503-19.
    51. Daubner, S.C., T. Le, and S. Wang, Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys, 2011. 508(1): p. 1-12.
    52. Giordano, A.L., A.E. Johnson, and J.S. Rosenblatt, Haloperidol-induced disruption of retrieval behavior and reversal with apomorphine in lactating rats. Physiol Behav, 1990. 48(1): p. 211-4.
    53. Hansen, S., A.H. Bergvall, and S. Nyiredi, Interaction with pups enhances dopamine release in the ventral striatum of maternal rats: a microdialysis study. Pharmacol Biochem Behav, 1993. 45(3): p. 673-6.
    54. Stern, J.M. and S.E. Keer, Maternal motivation of lactating rats is disrupted by low dosages of haloperidol. Behav Brain Res, 1999. 99(2): p. 231-9.
    55. Henschen, C.W., R.D. Palmiter, and M. Darvas, Restoration of dopamine signaling to the dorsal striatum is sufficient for aspects of active maternal behavior in female mice. Endocrinology, 2013. 154(11): p. 4316-27.
    56. Stenmark, H. and V.M. Olkkonen, The Rab GTPase family. Genome Biol, 2001. 2(5): p. REVIEWS3007.
    57. Zerial, M. and H. McBride, Rab proteins as membrane organizers. Nat Rev Mol Cell Biol, 2001. 2(2): p. 107-17.
    58. Hutagalung, A.H. and P.J. Novick, Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev, 2011. 91(1): p. 119-49.
    59. Verhoeven, K., et al., Mutations in the small GTP-ase late endosomal protein RAB7 cause Charcot-Marie-Tooth type 2B neuropathy. Am J Hum Genet, 2003. 72(3): p. 722-7.
    60. Dalfo, E., et al., Abnormal alpha-synuclein interactions with Rab proteins in alpha-synuclein A30P transgenic mice. J Neuropathol Exp Neurol, 2004. 63(4): p. 302-13.
    61. Sahlender, D.A., et al., Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J Cell Biol, 2005. 169(2): p. 285-95.
    62. Meggouh, F., et al., Charcot-Marie-Tooth disease due to a de novo mutation of the RAB7 gene. Neurology, 2006. 67(8): p. 1476-8.
    63. Jenkins, D., et al., RAB23 mutations in Carpenter syndrome imply an unexpected role for hedgehog signaling in cranial-suture development and obesity. Am J Hum Genet, 2007. 80(6): p. 1162-70.
    64. Vazquez-Martinez, R., et al., Rab18 inhibits secretory activity in neuroendocrine cells by interacting with secretory granules. Traffic, 2007. 8(7): p. 867-82.
    65. Dejgaard, S.Y., et al., Rab18 and Rab43 have key roles in ER-Golgi trafficking. J Cell Sci, 2008. 121(Pt 16): p. 2768-81.
    66. Ozeki, S., et al., Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci, 2005. 118(Pt 12): p. 2601-11.
    67. Martsolf, J.T., A.G. Hunter, and J.C. Haworth, Severe mental retardation, cataracts, short stature, and primary hypogonadism in two brothers. Am J Med Genet, 1978. 1(3): p. 291-9.
    68. Warburg, M., et al., Autosomal recessive microcephaly, microcornea, congenital cataract, mental retardation, optic atrophy, and hypogenitalism. Micro syndrome. Am J Dis Child, 1993. 147(12): p. 1309-12.
    69. Bem, D., et al., Loss-of-function mutations in RAB18 cause Warburg micro syndrome. Am J Hum Genet, 2011. 88(4): p. 499-507.
    70. Handley, M.T., et al., Warburg Micro syndrome is caused by RAB18 deficiency or dysregulation. Open Biol, 2015. 5(6): p. 150047.
    71. Yu, H., D.S. Leaf, and H.P. Moore, Gene cloning and characterization of a GTP-binding Rab protein from mouse pituitary AtT-20 cells. Gene, 1993. 132(2): p. 273-8.
    72. Cochilla, A.J., J.K. Angleson, and W.J. Betz, Monitoring secretory membrane with FM1-43 fluorescence. Annu Rev Neurosci, 1999. 22: p. 1-10.
    73. Brumback, A.C., et al., Using FM1-43 to study neuropeptide granule dynamics and exocytosis. Methods, 2004. 33(4): p. 287-94.
    74. Cheng, C.Y., et al., ENU mutagenesis identifies mice modeling Warburg Micro Syndrome with sensory axon degeneration caused by a deletion in Rab18. Exp Neurol, 2015. 267: p. 143-51.
    75. Nguyen, R., et al., Parvalbumin and GAD65 interneuron inhibition in the ventral hippocampus induces distinct behavioral deficits relevant to schizophrenia. J Neurosci, 2014. 34(45): p. 14948-60.
    76. Belnoue, L., et al., Plasticity in the olfactory bulb of the maternal mouse is prevented by gestational stress. Sci Rep, 2016. 6: p. 37615.
    77. Hedlund, E., et al., Dopamine Receptor Antagonists Enhance Proliferation and Neurogenesis of Midbrain Lmx1a-expressing Progenitors. Sci Rep, 2016. 6: p. 26448.
    78. Coronas, V., et al., Dopamine D3 receptor stimulation promotes the proliferation of cells derived from the post-natal subventricular zone. J Neurochem, 2004. 91(6): p. 1292-301.
    79. Schmitt, A., et al., Hippocampal volume and cell proliferation after acute and chronic clozapine or haloperidol treatment. J Neural Transm (Vienna), 2004. 111(1): p. 91-100.

    下載圖示
    QR CODE