研究生: |
何怡慧 Ho, Yi-Huei |
---|---|
論文名稱: |
以資訊植入及深度學習提升圖像化二維條碼實體輸出的辨識能力之研究 Improve the recognition of graphic QR code output with information embedding and deep learning |
指導教授: |
王希俊
Wang, Hsi-Chun |
口試委員: |
王希俊
Wang, Hsi-Chun 周遵儒 Chou, Tzren-Ru 呂俊賢 Lu, Chun-Shien |
口試日期: | 2021/09/02 |
學位類別: |
碩士 Master |
系所名稱: |
圖文傳播學系 Department of Graphic Arts and Communications |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | QR code 、圖像化二維條碼 、印刷 、資訊植入 、深度學習 、卷積神經網路 |
英文關鍵詞: | QR code, Aesthetic QR code, Output, Information Hiding, Deep Learning, Convolution Neural Network |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202101227 |
論文種類: | 學術論文 |
相關次數: | 點閱:253 下載:17 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
QR code 是目前最普遍被採用的二維條碼,由於其為黑白模塊所組成,影響視 覺美觀,且在列印輸出時,因尺寸大小、網點擴張等印刷條件因素,導致條碼資訊 容易失真,影響解碼辨識。為了能夠將印刷輸出之小尺寸美化 QR code 保持視覺美 觀並且穩定解碼,因此本文提出了一套系統性的圖像化 QR code 資訊植入技術,列 印後掃描將辨識結果進行錯誤分析,了解 QR code 之黑點與白點資訊點模組的錯誤 特性並加以改善,最後以深度學習辨識來進行錯誤分析。實驗結果顯示,本研究所 發展的方法能相容於現行的列印輸出設備,在調整白色資訊點的植入訊息強度後, 可有效抑制因網點擴張所造成的「偽黑」 辨識錯誤的情形。且輸出的小尺寸圖像化 QR 仍有較佳視覺品質,降低錯誤發生率,並藉由深度學習辨識提升辨識能力,有 效增進美化 QR 的成功讀取率。對於彩色影像在指定輸出裝置的條件下,可得到最 佳化的 QR code 植入訊息方法及讀取能力,未來能夠運用於商業加值應用上,並彰 顯實體輸出條件對於圖像化 QR code 整合應用的重要性。
QR codes are currently the most commonly used 2D barcodes, composed of black and white modules, which detracts from their aesthetic appeal. When printed, due to size, dot gain, and other printing conditions, barcode information is easily distorted, yielding poor recognition results. In order to beautify the small size of the printed output QR code to maintain visual beauty and stable decoding. We present a systematic aesthetic QR code information embedding technique as well as an error analysis method for physically printed QR codes. Understand and improve the error characteristics of the black dots information and white dots information of the QR code, and finally perform error analysis with deep learning recognition. The experimental results show that the proposed method is compatible with current printing and output equipment. Judicious adjustment of the embedded strength of white module dots decreases the false-black recognition error caused by dot gain, and yields small printed aesthetic QR codes that look better. This improves the decoding rates of aesthetic QR codes, and through deep learning recognition to improve recognition ability. We optimize the QR code embedded method and reading ability given specified output device conditions. This highlights the importance of output conditions for integrated applications of aesthetic QR codes.
林育峯、王希俊(2018)。圖像化二維條碼之輸出尺寸與辨識率分析。印刷科技, 34(4),1-13。
張鈸 (2019)。人工智能進入後深度學習時代。智能科學與技術學報,1(1),4-6。
曾婉菁(2012)。QR Code 技術之探討。印刷科技,127,49-62。
劉建偉,劉媛,羅雄麟 (2014)。深度學習研究進展。計算機應用研究,31(7),1921-1942。
Chin, L., Yancong, S., & Ran, W. (2017). Extended photomosaic with QR code capability. IEEE International Conference on Multimedia and Expo Workshops (ICMEW), 1-6.
Garateguy, G. J., Arce, G. R., Lau, D. L., & Villarreal, O. P. (2014). QR images: optimized image embedding in QR codes. IEEE Transactions on Image Processing, 23(7), 2842-2853.
Hansen, D. K., Nasrollahi, K., Rasmussen, C. B., & Moeslund, T. B. (2017). Real-time barcode detection and classification using deep learning, IJCCI, 321-327.
Hung, S. H., Yao, C. Y., Fang, Y. J.,Tan, P., Lee, R. R., & Chu, H. K.(2020). Micrography QR Codes. IEEE Transactions on Visualization and Computer Graphics, 26(9), 2834-2847.
ISO/IEC 18004:2006. Information technology–Automatic Identification and Data Capture Techniques–QR Code 2005 Bar Code Symbology Specification.
Kikuchi, R., Yoshikawa, S., Jayaraman, P.K., Zheng, J., & Maekawa, T. (2018). Embedding QR codes onto B- spline surfaces for 3D printing. Computer-Aided Design, 102, 215-223.
Kuribayashi, M., Morii, M. (2017). Aesthetic QR code based on modified systematic
encoding function. IEICE Transactions on Information and Systems, 100(1), 42-51. Lin, S.S., Hu M.C., Lee, C.H., Lee, T.Y. (2015). Efficient QR Code beautification with
high quality visual content. IEEE Trans Multimed, 17(9), 1515-1524.
Long, J., Shelhamer, E., & Darrell, T. (2015). Fully Convolutional Networks for Semantic Segmentation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Song, K., Liu, N., Gao, Z., Zhang, J., Zhai, G., & Zhang, X. P. (2020). Deep Restoration of Invisible QR Code from TPVM Display. IEEE International Conference on
Multimedia & Expo Workshops (ICMEW), 1-6.
Wang, Y.M., Sun, C.T., Kuan, P.C., Lu, C.S., & Wang, H.C. (2018). Secured graphic QR code with infrared watermark. International Conference on Applied System
Innovation (ICASI’18), Chiba, Japan.
Yang, Z., Xu, H., Deng, J., Loy, C. C., & Lau, W. C. (2018). Robust and fast decoding of high-capacity color QR codes for mobile applications. IEEE Transactions on Image Processing, 27(12), 6093-6108.
Yuan, T. L., Wang, Y. L., Xu, K., Martin, R. R., Hu, S. M. (2019). Two-Layer QR Codes.
IEEE Transactions on Image Processing,28(9), 4413-4428.
Zhang, J., Li, D., Jia, J., Sun, W., & Zhai, G. (2019). Protection and hiding algorithm of QR code based on multi-channel visual masking. In 2019 IEEE Visual Communications and Image Processing, 1-4.
iT 邦幫忙(2019)。〈深度學習的種類〉。取自 https://ithelp.ithome.com.tw/articles/10217967?sc=iThelpR
安迪的條碼世界(2014)。〈條碼的種類〉。取自 http://www.appsbarcode.com/barcode-type.php
每日頭條(2019)。〈深度學習 NN、CNN、RNN、和 DNN 你了解嗎?〉。 取自 https://kknews.cc/zh-tw/tech/8g9lk44.html
維基百科(2014)。〈二維條碼〉。取自 https://zh.wikipedia.org/wiki/二維碼
維基百科。〈循環神經網路〉。取自 https://zh.wikipedia.org/zh-tw/循環神經網路
維基百科。〈卷積神經網路〉。取自 https://zh.wikipedia.org/zh-tw/卷積神經網路