研究生: |
林亮宇 |
---|---|
論文名稱: |
以二苯并環庚烷為骨架之螺旋烯與咔唑環與茀環為中心模板之三芳香胺在有機電激發光和非線性光學材料之研究 |
指導教授: | 陳建添 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 172 |
中文關鍵詞: | 螺旋烯化合物 、有機電激發光材料 、非線性光學材料 |
英文關鍵詞: | helicene compounds, OLEDs, NLO |
論文種類: | 學術論文 |
相關次數: | 點閱:166 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
OLED
我們利用上盤二苯并環庚烷 (dibenzosuberane) 10號跟11號位置上融合奎咢啉 (Quinoxaline) 系統且下盤片段融合不同的芳香族化合物形成螺旋烯分子 (helicene) 來討論其系列分子在有機電致發光材料上的運用。
首先我們在上盤喹咢啉 (Quinoxaline) 分子之對位位子融合上不同的官能基,希望借由結合雙功能性 (bifunction) 與偶極 (dipolar) 的特性,使材料之間更能有效形成光激子 (exciton),並且利用這些系統的衍生物,去做一系列在有機電致發光材料的研究和探討。
而我們利用差相掃瞄卡計法 (DSC) 和熱重量分析儀 (TGA) 去測量這些系統的熱穩定性,除了以咔唑環 (flavone) 為下盤片段之化合物2e之熱穩定比較不好以外,對其他的系統而言熱穩定性質都不錯,其中當分子量越大或下盤片段之立障越大時,其熱穩定性就會越好。接著對這些系統的衍生物進行吸收,放射光譜,螢光量子產率的測量;同時也利用循環伏特安培法評估其氧化還原行為和測定其HOMO-LUMO能階。接著搭配合適的電子傳輸層或電洞傳輸層製作發光二極體元件,並測量其光電性質,目前以化合物1g作為發光層的效果最好,其最大波長為516 nm,其半波寬長為98 nm,且元件操作在電流密度20 mA/cm2時,電流效應 (Luminance Efficiency) 為7.21 cd/A,功率 (Power Efficiency) 為2.18 lm/W,外部量子效率 (External Quantum Efficiency) 為2.3 %。
NLO
我們用茀環 (fluorene) 之2,7號位置接上不同取代基為上盤而在下盤片段融合上咔唑環 (flavone) 分子,討論這個螺旋烯分子的非線性光學性質。這一類的分子有相當好的電荷轉移 (charge transfer) 特性可以誘導出非線性光學的性質,而其模式是藉由中間雙鍵扭張構形之變化使得fluorene上盤模版成為極優良的電子受體,而其電子受體之能力則由在C2和C7位置二芳香胺來調控。螺旋烯分子的上下盤有著扭曲的雙鍵結構,由已發表的文章指出,如果分子內的π-電子系統有著扭曲的結構,可以增強其非線性光學的特性。我們得到最大的非線性光學數值是化合物4h大小為5.1x10-45,比較標準品DANS 之8.8x10-46可以看得出來雖然我們的化合物缺少了好的電子受體,但是在C2和C7位置二芳香胺來調控下可得NLO性質高於DANS,故可以期待作為一個不錯的非線性光學材料。
Abstract
OLED
A series of helicene derivatives based on dibenzosuberane which is fused quinoxaline on position number 10 and number 11 were prepared for applications in organic light-emitting diodes. These molecular material structures are confirmed by NMR and single X-ray diffraction structures .
Differential scanning calorimetry and thermogravimetric analysis studies were carried out to measure the thermal stability of these molecular materials . The redox behaviors and HOMO / LUMO energy differences are evaluated by the cyclic voltammetry experiments. These compounds were subjected to optoelectronic studies by fabricated the OLEDs with a device configuration of ITO/ NPB / compound / Alq3 / LiF / Al . Among them , the compound 1g led to the best device performance and hold maximum external quantum efficiency of 2.3%.
NLO
We introduced the 2,7-substuted fluorene of helicene to be employed in non-linear optical materials. These molecular material structures are also confirmed by NMR and single X-ray diffraction structures.
From the UV-VIS and the emission spectra , we know about the stokes shift was very large in these compounds . And using DFT-calculation we can find the charge transfer happened very easy inside the molecular structure . Finally , we test the properties of NLO by EFISH , and the biggest value is the compound 4h (5.1x10-45) , compare to the standand DANS (8.8x10-46) .
參考文獻
(1) Pope, M.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042.
(2) Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
(3) Tang, C. W.; Chen, C. H.; Goswami, R. US. 1988, 4, 769, 292.
(4) 光電有機電激發光顯示器技術及應用,顧鴻壽編著。
(5) VanSlyke, S. A.; Tang, C. W. US. 1991, 5, 061, 569
(6) Sato, Y.; Ichinosawa, S.; Kanai, H. IEEE J. Selected Topic in Quantum Electronics. 1998, 4, 40.
(7) Yamamori, Aa.; Adachi, C.; Koyama, T.; Taniquchi, Y. Appl. Phys. Lett. 1998, 72, 2147
(8) Sato, Y.; Ichinosawa, S.; Ogata, T.; Fugono, M.; Murata, Y. Syn. Met. 2000, 111, 25.
(9) O’Brien, D. F.; Purrows, P. E.; Forrest, S. R.; Koene, B. E.; Loy, D. E.; Thompson, M. E. Adv. Mater. 2000, 13, 1011.
(10) Yamashita, K.; Mori, T.; Mizutani, T.; Miyazaki, H.; Takeda, T. Thin Sol. Film. 2000, 363, 33.
(11) Wu, L. Y.; Lin, J. T.; Tao, Y. T.; Balasubramaniam, E. Adv. Mater. 2000, 12, 668.
(12) Albert, I. d. L; Marks, T. J.; Ratner, M. A. J, Am. Chem. Soc. 1997, 119, 6575.
(13) Giebeler, C.; Antonladis, H.; Bradley, D. D. C.; Shirota, Y. J. Appl. Phys. 1999, 85, 608
(14) Salbeck, J.; Yu, N.; Bauer; Weissotel, F.; Bestgen, H. Synth. Met. 1997, 91, 209.
(15) Bach, U.; Cloedt, K. D.; Spreitzer, H.; Gratzel, M. Adv. Mater. 2000, 12, 1060.
(16) Mitschke, U. P.; Bauerle, J. Mater. Chem. 2000, 10, 1471.
(17) Hartwig, J. F; Kawatsura, M.;Hauck, S. I.; Shaughnessy, K. H.; Alcazar, R. L. M. J. Org. Chem. 1999, 64, 5575.
(18) Balasubramaniam, A; Danel, P; Tomasik. Appl. Phys. Lett. 2000, 11, 933.
(19) Thomas, K. R. J.; Lin, J, T.; Ko, C. W. Adv. Mater. 2000, 12. 1949.
(20) Tokio, S.; Noda, k.; Fujikawa, H.; Taga, Y.; Kimura, M.; shimada, K.; Sawaik. Y. Appl. Lett. 2000, 77, 160.
(21) Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1989, 55, 1489.
(22) Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1990, 56, 799.
(23) Cao, Y.; Parker, I. D.; Zhang, C.; Heeger, A. Nature, 1999, 397,414.
(24) (a) Dewhurst, f.; Shah, P. K. J. Chem. Soc. (C). 1970, 1737. (b) Zalazar, M. F.; Nelida M. P. J. Phys. Chem. A. 2007, 111, 7848-7859.
(25) (a) Liu, T. H.; Iou, C. Y.; Wen, S. W.; Chen, C. H. Thin Solid Films. 2003, 441, 223. (b) Liu, T. H.; Iou, C. Y.; Chen, C. H. Appl. Phys. Lett. 2003, 83, 5241.
(26) (a) Fox, J. L.; Chen, C. H. US. 4, 736, 032, 1998. (b) Inoe, T.; Nakatani, K. JP. 6, 009, 952, 1994. (c) Ito, J. JP. 7, 166, 160, 1995.
(27) Shi, J.; Tang, C. W.; Chen, C. H. US. 5, 935, 721, 1999
(28) (a) Zhu, W. H.; Tian, H.; Elschner, A. Chem. Lett. 1999, 501. (b) Mochizuki, H.; Gasui, T.; Kawamoto, M.; Shiono, T.; Ikeda, T.; Adachi, C.; Taniguchi, Y.; Shirota, T. Chem. Commun, 2000, 1923. (c) Tamoto, N.; Adachi, C.; Nagai, K, Chem. Mater. 1997, 9, 1077. (d) Peng, Z. H.; Bao, Z. N.; Galvin, M. E. Chem. Mater, 1998, 10, 2086.
(29) (a) Liu, Y.; Ma, H.; Jen, A. K. Y. Chem. Commun. 1998, 2724. (b) Wang, Y. Z.; Epstein, A. J. Acc. Chem. Res. 1999, 32, 217. (c) Jenekhe, S. A.; Lu, L. D.; Alam, M. M. Macromol. 2001, 34, 7315.
(30) (a) Thomas, K. R. J.; Lin, J. T.; Yao, Y. T.; Chuen, C. H. Chem. Mater. 2002, 14, 3858. (b) Yhomas, K. R. J.; Lin, J. Y.; Tao, Y. T.; Chuen, C. H. J. Mater. Chem. 2002, 12, 3516.
(31) (a) song, S. Y.; Jang, M. S.; Shim, H. K.; Hwang, D. H.; Zyung, T. Macromol. 1999, 32, 1482. (b) Jiang, X.; Register, R. A.; Killeen, K. A.; Thompson, M. E.; Pschenitzka, f.; Sturm, J. C. Chem. Mater. 2000, 12, 2542. (c) Lee, y. z.; Chem, X.; Chem, S. A.; Wei, P. K.; Fann, W. S. J. Am. Chem. Soc. 2001, 123, 2296. (d) Tian, H.; Zhu, W. H.; elschner, A. Synth. Met. 2000, 111, 481. (e) Ng, S. C.; Lu, H. F.; Chan, H. S. O.; Fujii, A.; Laga, T.; Yoshino, K. Adv. Mater. 2000, 12, 1122. (f) Hong, Y. R.; Lee, D. W.; Kim, K.; Jin, J. I.; Lee, C. E.; Lee, H. M.; Park, Y.; Sgib, B. H.; Park, J. K. Macromol. Symp. 2001, 175, 169. (g) Kwok, C. C.; Wong, M. S. Macromol. 2001, 34, 6821. (h) Peng, Z. H.; Pan, Y. C.; Xu, B. B.; Zhang, J. H. Macromol. Symp. 2000, 154, 254. (i) Junji, K.; Gaku, H.; Katsutoshi, N. Chem. Lett. 1996, 161.
(32) (a) Chen, C. T.; Wei, Y.; Lin, J. S.; Murthy, V. R. K. M.; Chao, W. S.; Tao, Y. T.; Chien, C. H. J. Am. Chem. Soc. 2006, 128, 10992-10993. (b) Wei, Y.; Chen, C. T. J. Am. Chem. Soc. 2007, 129, 7478-7479.
(33) Chen, C. T.; Chou, Y. C. J. Am. Chem. Soc. 2000, 122, 7662-7672
(34) Franken, P. A.; Hill, A. E.; Peters, C. W.; Weinreich, G. Phys. Rev. Lett. 1961, 7, 118.
(35) Davydov, B. L.; Dekacheva, L. D.; Dunina, V. V.; Zhabotinskii, M. E.; Zolin, V. F.; Koreneva, L. G.; Samokhina, M. A. JEPT Lett. 1970, 12, 16.
(36) Davydov, B. L.; Dekacheva, L. D.; Dunina, V. V.; Zhabotinskii, M. E.; Zolin, V. F.; Koreneva, L. G.; Samokhina, M. A. Opt. Spectrosc. 1970, 30, 274.
(37) Koton, M. M. Vysokomol Soyed. 1973, A15, 2, 310.
(38) Tanaka, H. Elsevier Science Publisher B. V. Amsterdam, 1989, 267.
(39) Becker, M. W.; Linda, S.; Sapochak; Rima G.; Chengzeng X.; Larry R. D. Chem. Mater. 1994, 6, 104.
(40) Morley, John O. J. Chem. Soc. Perkin Trans. 1987, 2, 1351
(41) Cheng, L. T. J. Phys. Chem. 1991, 95, 10631.
(42) Dulcic, A.; Sauteret, C. J. Chem. Phys. 1978, 69, 3453
(43) Paley, M. S.; Harris, J. M.; Looser, H.; Baumert, J. C.; Bjorklund, G. C.; Jundt, D.; Twieg, R. J. J. Org. Chem. 1989, 54, 3774.
(44) Lalama, S. J.; Singer, K. D.; Garito, A. F.; Desai, K. N. Appl. Phys. Lett. 1981, 39, 940.
(45) Marder, S. R.; Beratan, D. N.; Cheng, L. T. Science. 1991, 252, 103.
(46) Gupta, M. C. The Handbook of Photonic, CRC press: Boca Raton, FL, 1997.
(47) Saleh, B. E. A.; Teich, M. C. Fundamental of Photonic, Wiley: New York.
(48) Sigelle, M.; Hierle, R.; J. Appl. Phys. 1981, 52, 4199.
(49) Uchiki, H.; Kobavashi, T. J. Appl. Phys. 1988, 64, 2625.
(50) Levy, Y.; Dentan, V.; Dumont, M.; Robin, P.; Chastaing, E.; Messier, J. Molecules for Nonlinear Optics and Photonics, 1989, 461.
(51) Teng, C. C.; Man, H. T. Appl. Phys. Lett.; 1990, 56, 1734.
(52) Mortazavi, M. A.; Knoesen, A.; Kowel, S. T.; Henry, R. A.; Hoover, J. M.; Lindsay, G. A. Appl. Phys. 1991, B53, 287.
(53) Schildkraut, J. S. Appl. Opt. 1990, 29, 2839.
(54) Shuto, Y.; amino, M. J. Appl. Phys. 1995, 77, 4632.
(55) (a) Albert, I. D. L.; Marks, T. J.; Ratner, M. A. J. Am. Chem. Soc. 1998, 120, 11174 (b) Kang, H.; Facchetti, A.; Zhu, P.; H.; Jiang, Y.; Cariati, E.; Righetto, S.; Ugo, R.; Zuccaccia, C.; Macchioni, A.; Stern, C. L.; Liu, Z.; Ho, S. T.; Marks, T. J. Angew. Chem. 2005, 117, 8137; Angew. Chem. Int. Ed. 2005, 44 7922 (c) Isborn, C. M.; Davidson, E. R.; Robinson, B. H. J. Phys. Chem. A. 2006, 110, 7189 (d) Bernard, R. B.; Henry, F. S. J. Am. Chem. Soc. 1978, 101, 301.
(56) Lin, H. C.; Yu, W.; Bai, H. T.; Chen, J. H.; Jin, B. Y.; Luh, T. Y. Angew. Chem. Int. Ed. 2007, 46, 897–900.
(57) David, R. K.; Mark, A. R.; Tobin, J. M. Chem. Rev. 1994, 195-242.
(58)國立臺灣師範大學94學年度林晉聲博士論文
(59)國立臺灣師範大學95學年度趙韋善碩士論文
(60)國立臺灣師範大學92學年度蔡亞萍碩士論文
(61)國立臺灣師範大學94學年度林季瑩碩士論文