研究生: |
楊承都 Yang, Cheng-Du |
---|---|
論文名稱: |
探討電化學表面電漿技術於即時監測與調控氧化石墨烯能隙之研究 Quantitative real-time and tunable band gap of deoxidization of graphene oxide using electrochemical surface plasmon resonance technology |
指導教授: |
邱南福
Chiu, Nan-Fu |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 電化學表面電漿技術 、即時監測 、調控能隙 |
英文關鍵詞: | Electrochemical surface plasmon resonance, real-time detection, tunable band gap |
DOI URL: | https://doi.org/10.6345/NTNU202204929 |
論文種類: | 學術論文 |
相關次數: | 點閱:165 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面電漿共振(surface plasmon resonance, SPR)技術可即時監測金屬-電介質表面折射率變化的特性。本研究利用SPR即時監測以電化學技術還原氧化石墨烯(Graphene oxide, GO)的去氧過程,藉由SPR角位移量的改變,判斷出不同還原時間下的氧含量,達到即時調控GO之碳氧比與能隙。
本研究採用三種不同的實驗方式還原GO,分別為實驗一:以循環伏安法(cyclic voltammetry, CV)還原GO膜;實驗二:以定電壓還原GO膜;實驗三:以CV還原GO混合溶液。前兩個實驗以胱胺(Cystamine, Cys)作為連接層,在金膜上形成穩定共價之GO膜,並分別以不同電化學模式CV與恆定電壓法進行還原。第三個實驗則是將GO溶液與NaCl電解質混合,形成GO混合溶液,之後再以CV法進行還原。
不同還原程度之GO膜,將採用X射線光電子能譜(X-ray photoelectron spectroscopy, XPS)與Raman光譜分析特性,並利用XPS的結果搭配Essential Macleod模擬軟體計算出不同還原程度之GO折射率。不同還原程度之GO混合溶液則採用光致螢光光譜(Photoluminescence, PL)與雙光束分光光譜儀系統(UV-Vis)進行分析。
本研究利用實驗與模擬結果證明了利用電化學表面電漿共振(Electrochemical surface plasmon resonance, EC-SPR)技術可以即時監測與逐步調控GO之碳氧比。使用定電壓還原在120秒內,可利用SPR技術調控GO之碳氧比,由4.10至71.41,折射率則可由1.7 + i0.17調控至1.83 + i0.42。而GO混合溶液則可用CV法調控GO之放光波長由470~600 nm。
Surface plasma resonance (SPR) technology is capable of detecting changes in refractive index near the surface of dielectric-metal interface. This paper used SPR technology real-time detection deoxidization process of graphene oxide (GO) converted to reduced graphene oxide (rGO) by electrochemical method.
In this study, we have three different experimental methods to reduction GO, Experiment I:Used cyclic voltammetry (CV) reduction GO film;Experiment II:Used constant voltage reduction GO film;Experiment III:Used CV reduction GO mixed solution. The first two experiments used cysteamine (Cys) connection a gold film and GO layer to form a stable covalent GO film. Then we used CV or constant voltage reduction GO film. The third experiment, GO solution is mixed with NaCl electrolyte to form a mixed solution of GO and reduction by CV.
We will analysis the rGO film by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Then, we can use of XPS results with Essential Macleod simulation software to calculate the rGO refractive index. GO mixed solution analysis by photoluminescence (PL) and double beam spectrophotometer (UV-Vis)
Experimental results demonstrate that the electrochemical surface plasmon resonance (EC-SPR) signal can quantitatively detect in real time and tunable C/O ratios. In constant voltage method, GO converts to rGO changes the C/O ratio from 4.10 into 71.41 and refractive index changes from 1.7 + i0.17 to 1.83 + i0.42. While the mixed solution of GO can tunable luminescence wavelength from 470~600 nm by CV method.
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al. “Electric field effect in atomically thin carbon films,” Science, 2004, 306, 666–669.
[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, et al. “Two-dimensional gas of massless Dirac fermions in graphene,” Nature, 2005, 438, 197–200.
[3] P. W. Sutter, J. I. Flege and E. A. Sutter, “Epitaxial graphene on ruthenium,” Nat. Mater., 2008, 7, 406–411.
[4] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, et al. “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science, 2009, 324, 1312–1314.
[5] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, et al. “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon, 2007, 45, 1558–1565.
[6] A. Mathkar, D. Tozier, P. Cox, P. Ong, C. Galande, K. Balakrishnan, et al. “Controlled, stepwise reduction and band gap manipulation of graphene oxide,” J. Phys. Chem. Lett., 2012, 3, 986–991.
[7] M. Acik, G. Lee, C. Mattevi, M. Chhowalla, K. Cho and Y. J. Chabal, “Unusual infrared-absorption mechanism in thermally reduced graphene oxide,” Nat. Mater., 2010, 9, 840–845.
[8] S. Y. Toh, K. S. Loh, S. K. Kamarudin and W. R. W. Daud, “Graphene production via electrochemical reduction of graphene oxide synthesis and characterisation,” Chem. Eng. J., 2014, 251, 422–434.
[9] J. Homola, S. S. Yeea and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. actuators. B Chem., 1999, 54, 3–15.
[10] 郭峻銓, “以表面電漿共振技術探討電化學法之石墨烯氧化物去氧還原過程,” 國立臺灣師範大學光電科技研究所碩士論文, 2013.
[11] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, et al. “graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater., 2010, 22, 3906–3924.
[12] J.J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, et al. “Ultrathin planar graphene supercapacitors,” Nano Lett., 2011, 11, 1423–1427.
[13] S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, et al. “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nature Nanotech., 2010, 5, 574–578.
[14] L. Wu, H. S. Chu, W. S. Koh and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express, 2010, 18, 14395–14400.
[15] B. C. Brodie, “On the atomic weight of graphite,” Phil. Trans. R. Soc. Lond., 1859, 149, 249–259.
[16] W.S. Hummers and R.E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc., 1958, 80, 1339–1339.
[17] M. Zhou, Y. Zhai and S. Dong, “electrochemical sensing and biosensing platform based on chemically reduced graphene oxide,” Anal. Chem., 2009, 81, 5603–5613.
[18] N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva, et al. “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater., 1999, 11, 771–778.
[19] Y. Xu, K. Sheng, C. Li and G. Shi, “Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide,” J. Mater. Chem., 2011, 21, 7376–7380.
[20] A. Lerf, H. He, M. Forster and J. Klinowski, “Structure of graphite oxide revisited,” J. Phys. Chem. B, 1998, 102, 4477–4482.
[21] W. Gao, L. B. Alemany, L. Ci and P. M. Ajayan “New insights into the structure and reduction of graphite oxide,” Nat. Chem., 2009, 1, 403−408.
[22] A. Neogi, S. Karna, R. Shah, U. Phillipose, J. Perez, R. Shimadac, et al. “Surface plasmon enhancement of broadband photoluminescence emission from graphene oxide,” Nanoscale, 2014, 6, 11310−11315.
[23] X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, et al. “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res., 2008, 1, 203–212.
[24] Z. Liu, J. T. Robinson, X. Sun and H. Dai, “PEGylated nanographene oxide for delivery of water-insoluble cancer drugs,” J. Am. Chem. Soc., 2008, 130, 10876–10877.
[25] T. Tsuchiya, T. Tsuruoka, K. Terabe and M. Aono, “In situ and nonvolatile photoluminescence tuning and nanodomain writing demonstrated by all-solid-state devices based on graphene oxide,” ACS Nano, 2015, 9, 2102–2110.
[26] K. P. Loh, Q. Bao, G. Eda and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nature Chem., 2010, 2, 1015–1024.
[27] G. Eda, Y.-Y. Lin, C. Mattevi, H. Yamaguchi, H.-A. Chen, I.-S. Chen, et al. “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater., 2010, 22, 505–509.
[28] A. Hickling “Studies in electrode polarisation. Part IV.—The automatic control of the potential of a working electrode,” Trans. Faraday Soc., 1942, 38, 27–33.
[29] W. C. Bigelow, D. L Pickett, and W. A. Zisman, “Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids,” Journal of Colloid Science., 1946, 1, 513–538.
[30] J. G. Chen, M. Sandberg and S. G. Weber, “Chromatographic method for the determination of conditional equilibrium constants for the carbamate formation reaction from amino acids and peptides in aqueous solution,” J. Am. Chem. Soc., 1993, 115, 7343–7350.
[31] R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. London, 1902, 18, 269–275.
[32] L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. London, Ser. A, 1907, 79, 399–416.
[33] U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves),” J. Opt. Soc. Am., 1941, 31, 213-222.
[34] A. Sommerfeld, “Ueber die Fortpflanzung elektrodynamischer Wellen längs eines Drahtes,” Annalen der Physik, 1899, 303, 233–290.
[35] E. A. Stern and R. A. Ferrell, “Surface plasma oscillations of a degenerate electron gas,” Phys. Rev., 1960, 120, 130–136.
[36] A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys., 1968, 216, 398–410.
[37] E. Kretschmann, “Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen,” Z. Phys., 1971, 241, 313–324.
[38] B. Liedberg, C. Nylander and I. Lundström, “Surface plasmons resonance for gas detection and biosensing,” Sens. Actuators, 1983, 4, 299–304.
[39] N. F. Chiu, C. H. Hou, C. J. Cheng and F. Y. Tsai, “Plasmonic circular nanostructure for enhanced light absorption in organic solar cells,” Int. J. Photoenergy, 2013, 502576.
[40] S. Y. Nien, N. F. Chiu, Y. H. Ho, J. H. Lee, C. W. Lin, K. C. Wu, et al. “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett., 2009, 94, 103304.
[41] N. F. Chiu and T. Y. Huang, “Sensitivity and kinetic analysis of graphene oxide-based surface plasmon resonance biosensors,” Sens. actuators. B Chem., 2014, 197, 35–42.
[42] C. C. Chang, N. F. Chiu, D. S. Lin, Y. C. Su, Y. H. Liang and C. W. Lin, “High-sensitivity detection of carbohydrate antigen 15-3 using a gold/zinc oxide thin film surface plasmon resonance-based biosensor,” Anal. Chem., 2010, 82, 1207–1212.
[43] M. J. Kwon, J. Lee, A. W. Wark and H. J. Lee, “Nanoparticle-enhanced surface plasmon resonance detection of proteins at attomolar concentrations: comparing different nanoparticle shapes and sizes,” Anal. Chem., 2012, 84, 1702–1707.
[44] A. J. A. El-Haija, “Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique,” J. Appl. Phys., 2003, 93, 2590.
[45] A. G. Frutos and R. M. Corn, “SPR of Ultrathin Organic Films,” Anal. Chemi., 1998, 70, 449A–455A.
[46] H. Dong, X. Cao, C. M. Li and W. Hu, “An in situ electrochemical surface plasmon resonance immunosensor with polypyrrole propylic acid film: Comparison between SPR and electrochemical responses from polymer formation to protein immunosensing,” Biosens. Bioelectron., 2008, 23, 1055–1062.
[47] S. E. Salamifar and R. Y. Lai, “Application of electrochemical surface plasmon resonance spectroscopy for characterization of electrochemical DNA sensors,” Colloids Surf. B Biointerfaces, 2014, 122, 835–839.
[48] S. Wang, X. Huang, X. Shan, K. J. Foley and N. Tao, “Electrochemical surface plasmon resonance: basic formalism and experimental validation,” Anal. Chem., 2010, 82, 935–941.
[49] I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, et al. “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C, 2008, 112, 8499–8506.
[50] Z. Wang, X. Zhou, J. Zhang, F. Boey and H. Zhang, “Direct Electrochemical Reduction of Single-Layer Graphene Oxide and Subsequent Functionalization with Glucose Oxidase,” J. Phys. Chem. C, 2009, 113, 14071–14075.
[51] Z. Zhang and J. Yin, “Sensitive detection of uric acid on partially electro-reduced graphene oxide modified electrodes,” Electrochim. Acta, 2014, 119, 32–37.
[52] A. Tadjeddine, D.M. Kolb and R. Kötz, “The study of single crystal electrode surfaces by surface plasmon excitation,” Surf. Sci., 1980, 101, 277–285.
[53] J. G. Gordon II and S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci., 1980, 101, 499–506.
[54] A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B, 2000, 61, 14095.
[55] L. Yang, D. Liu, J. Huanga and T. You, “Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode,” Sens. actuators. B Chem., 2014, 193, 166–172.
[56] K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud'homme, I. A. Aksay and R. Car, “Raman spectra of graphite oxide and functionalized graphene sheets,” Nano Lett., 2008, 8, 36–41.
[57] X.-Y. Peng, X.-X. Liu, D. Diamond and K. T. Lau, “Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor,” Carbon, 2011, 49, 3488–3496.
[58] S. Pei and H.-M. Cheng, “The reduction of graphene oxide,” Carbon, 2012, 50, 3210–3228.
[59] M.-K. Chuang, S.-W. Lin, F.-C. Chen, C.-W. Chub and C.-S. Hsuc, “Gold nanoparticle-decorated graphene oxides for plasmonic-enhanced polymer photovoltaic devices,” Nanoscale, 2014, 6, 1573–1579.
[60] S. Yang, W. Yue, D. Huang, C. Chen, H. Lina and X. Yang, “A facile green strategy for rapid reduction of graphene oxide by metallic zinc,” RSC Adv., 2012, 2, 8827–8832.
[61] C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, et al. “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed., 2012, 51, 6662–6666.