簡易檢索 / 詳目顯示

研究生: 陳鑫澔
Chen, Shin-Hau
論文名稱: 臺灣雲解析差時系集颱風定量降水預報應用研究
An Study of Time-Lagged Cloud-Resolving Typhoon Ensemble Quantitative Precipitation Forecast in Taiwan and its applications
指導教授: 王重傑
Wang, Chung-Chieh
口試委員: 王重傑
Wang, Chung-Chieh
楊明仁
Yang, Ming-Jen
陳柏孚
Chen, Buo-Fu
劉清煌
Liu, Ching-Hang
簡芳菁
Chien, Fang-Ching
口試日期: 2023/07/21
學位類別: 博士
Doctor
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 106
中文關鍵詞: 數值天氣預報颱風防災機器學習
研究方法: 實驗設計法個案研究法
DOI URL: http://doi.org/10.6345/NTNU202301373
論文種類: 學術論文
相關次數: 點閱:104下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣的颱風降雨雖為主要的水源之一,但也常因此造成災害。數值天氣預報開發以來,時常面臨著不確定性造成的困難,眾多研究者嘗試使用各式方法獲取防災資訊,本研究面對臺灣颱風防災的需求,嘗試在現有資源限制下,建構針對臺灣颱風降水於防災的建議系統。
    具體而言,本研究使用雲解析風暴模式,建構上採用了2.5km水平格點間距,每六小時進行八天的預報,在本研究的十個目標颱風內,經過評估後皆能在各颱風風雨影響臺灣前至少52小時前,也就是大約兩天以前,找出颱風影響期間總累積降雨量的相似技術得分(Similarity Skill Score,簡稱SSS) 大於0.6的高解析度的降水情境,顯示此方法實際應用上可以在有反應時間的前提下,提供有效的降水情境。
    防災事前可以針對最糟糕的降水情境做防範,但為了更有效的找出較有參考價值的預報,本研究針對十個西行侵臺颱風選出105個預報參數,使用機器學習嘗試建構能夠預估降水指引(SSS為其中之一)與路徑指引的模型並進行評估,評估後大多數機器學習預估的SSS皆能適度掌握不同初始時間預報中的實際降水SSS好壞。機器學習預估的結果約在實際颱風影響臺灣26小時前可以產出,當預估的SSS中位數達0.6以上時,實際的SSS也有71%超過0.6,顯示可以在中心登陸兩天前預先指出那些預報的可信度低,那些的可信度高。
    本研究進行機器學習訓練時進入模型的颱風數量上不多,可當作ㄧ初步之研究,文章中亦討論了許多颱風預報相關性分析,並提出了幾個可能的改進方向。總體來說,高解析差時系集預報輔以機器學習可在臺灣西行颱風的防災預警上,提供有效的降水情境,並指出較具可信度的預報。

    致謝 i 摘要 ii 目次 iii 表目次 v 圖目次 vii 第一章 前言 1 第二章 資料來源及研究方法 6 2.1資料來源 6 2.2模式介紹 7 2.3差時系集預報系統與模式設定 9 2.4颱風客觀定位 10 2.5颱風路徑誤差 11 2.6降水技術得分 12 第三章 差時系集預報結果 14 3.1尼伯特颱風 15 3.2蘇迪勒颱風 16 3.3杜鵑颱風 17 3.4蘇力颱風 18 3.5麥德姆颱風 19 3.6莫蘭蒂颱風 20 3.7蘇拉颱風 21 3.8昌鴻颱風 22 3.9天兔颱風 23 3.10菲特颱風 24 第四章 機器學習模型介紹、變數相關性與測試 25 4.1機器學習之預報參數 26 4.2機器學習之客觀指引 28 4.3預報參數與降水客觀指引的相關性 29 4.4預報參數與路徑誤差指引的相關性討論 32 4.5機器學習模型介紹、建立、測試與調整 34 第五章 機器學習初步結果與分析 37 5.1機器學習生成颱風降水預報指引之討論 38 5.2機器學習生成颱風路徑預報指引之討論 43 5.3機器學習模型敏感度測試 44 第六章 綜合討論 46 第七章 結論與未來工作 48 參考文獻 49

    王時鼎, 1992:侵台颱風路徑、強度、結構及風雨整合研究。國科會防災科技研究報告,NSC 80-0414-P052-02B,285頁。
    中央氣象局, 2021:颱風百問。(https://www.cwb.gov.tw/V8/C/K/Encyclopedia/typhoon/typhoon.pdf?v=20200330)
    周昆炫、吳聖宇與林書正, 2018: 颱風壯度與大小對台灣風雨之影響。大氣科學,46-3,222-245。
    陳昱璁、馮智勇、張博雄、許乃寧與賈愛玫, 2018: 應用貝氏模型平均法發展颱風路徑機率預報指引。大氣科學,46-2,172-196。
    莊美誼、王彥雯、黃煜鈞、李美賢、張惠玲、洪景山與蕭朱杏, 2022: 應用類神經網路進行台灣地區颱風系集降雨機率預報校正。大氣科學,50,188-211。
    蔡孝忠, 2007: 中央氣象局颱風路徑機率預報新產品−路徑機率預報。中央氣象局通訊月刊,2007年12月號。
    蔡孝忠、呂國臣、許乃寧與賈愛玫, 2011: 蒙地卡羅法在颱風侵襲機率估計的應用。大氣科學,39-3,269-288。
    蔡建鴻,2021: 雲解析差時系集在侵襲菲律賓颱風定量降水預報之評估研究。碩士論文,173頁。
    錢稚偉,2018: 雲解析模式對侵臺颱風八天定量降水預報技術之評估與特性分析。碩士論文,133頁。
    顧欣怡, 2006: 颱風侵襲機率預報系統開發。中央氣象局九十五年度研究報告,第CWB95-1A-07號。
    Bi K.-F., L.-X, Xie, H.-H. Zhang, X. Chen, X.-T. Gu1 and Q. Tian, 2023: Accurate medium-range global weather forecasting with 3D neural networks, Nature, 619, 533-538
    Bjerknes, V., 1904: Das Problem der Wettervorhersage, betrachtet vom Standpunkte der Mechanik und der Physik. Met. Zeit., 21, 1-7. Translation by Y. Mintz: The problem of weather forecasting as a problem in mechanics and physics. Los Angeles, 1954. Reprinted in: The Life Cycles of Extratropical Cyclones. M. A. Shapiro and S. Grønås, Eds., Amer. Meteor. Soc., 1–4, 1999.
    Chang, C.-P., T.-C. Yeh, and J.-M. Chen, 1993: Effects of terrain on the surface structure of typhoons over Taiwan. Mon. Wea. Rev., 121, 734–752.
    Chang, C.-P., Y.-T. Yang, and H.-C. Kuo, 2013: Large increasing trend of tropical cyclone rainfall in Taiwan and the roles of terrain. J. Climate, 26, 4138–4147.
    Chang, H.-L., H. Yuan, and P.-L. Lin, 2012: Short-range (0–12 h) PQPFs from time-lagged multimodel ensembles using LAPS. Mon. Wea. Rev., 140, 1496–1516, doi:10.1175/ MWR-D-11-00085.1.
    Charney, J., R. Fjörtoft, and J. von Neumann, 1950: Numerical integration of the barotropic vorticity equation. Tellus, 2(4), 237–254. doi:10.1111/j.2153-3490.1950.tb00336.x.
    Chien, F.-C., and H.-C. Kuo, 2011: On the extreme rainfall of Typhoon Morakot (2009). J. Geophys. Res., 116, D05104, doi:10.1029/2010JD015092.
    Chollet, F., 2015: keras, GitHub, https://github.com/fchollet/keras.
    Cybenko, G., 1989: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst., 2(4), 303–314.
    DeMaria, M., Knaff, J. A., Knabb, R., Lauer, C., Sampson, C. R., DeMaria, R. T., 2009: A newmethod for estimating tropical cyclone wind speed probabilities, Wea. Forecasting, 24, 1573-1591.
    Done, J., Davis, C.A., Weisman, M., 2004. The next generation of NWP: explicit forecasts of convection using the Weather Research and Forecasting (WRF) model. Atmos. Sci. Lett. 5, 110–117.
    Epstein, E. S., 1969: Stochastic dynamic prediction. Tellus, 21, 739–759, doi:10.1111/j.2153-3490.1969.tb00483.x.
    Gagne, D. J., A. McGovern, and M. Xue, 2014: Machine learning enhancement of storm-scale ensemble probabilistic quantitative precipitation forecasts. Wea. Forecasting, 29, 1024–1043.
    Gagne, D., A. McGovern, S. Haupt, R. Sobash, J. Williams, and M. Xue, 2017: Storm-based probabilistic hail forecasting with machine learning applied to convection-allowing ensembles. Wea. Forecasting, 32, 1819–1840.
    Gentry, M. S., Lackmann, G. M.,2010: Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon. Weather Rev. 138, 688–704
    Hong, J.-S., C.-T. Fong, L.-F. Hsiao, Y.-C. Yu, and C.-Y. Tzeng, 2015: Ensemble typhoon quantitative precipitation forecasts model in Taiwan. Wea. Forecasting, 30, 217–237.
    Hsu, L.-H., H.-C. Kuo, and R. G. Fovell, 2013: On the geographic asymmetry of typhoon translation speed across the mountainous island of Taiwan. J. Atmos. Sci., 70, 1006–1022.
    Kingma, D. P., and J. Ba, 2015: Adam: A method for stochastic optimization. Proceedings, the Third International Conference on Learning Representations. San Diego, CA, USA, 13 pp, http://arxiv.org/abs/1412.6980.
    Kohavi, R.,1995: A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings, the 14th International Joint Conference on Artificial Intelligence (IJCAI), 2, San Francisco, CA, USA, 1137–1143.
    Kong, F., K. K. Droegemeier, and N. L. Hickmon, 2006: Multiresolution ensemble forecasts of an observed tornadic thunderstorm system. Part I: Comparison of coarse- and fine-grid experiments. Mon. Wea. Rev., 134, 807–833, doi:10.1175/MWR3097.1.
    Lee, C.-S., L.-R. Huang, and H.-S. Shen, 2006: A climatology model for forecasting typhoon rainfall in Taiwan. Natural Hazards, 37, 87–105.
    Lee, C.-S., L.-R. Huang, and D. Y.-C. Chen, 2013: The modification of the typhoon rainfall climatology model in Taiwan. Natural Hazards Earth Syst. Sci., 13, 65–74.
    Leith, C., 1974: Theoretical skill of Monte Carlo forecasts. Mon. Wea. Rev., 102, 409–418, doi:10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2.
    Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141, doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
    Lu, M.-M., C.-T. Lee and B. Wang, 2013:. Seasonal prediction of accumulated tropical cyclone kinetic energy around Taiwan and the sources of the predictability. International Journal of Climatology. 33. 2846-2854. 10.1002/joc.3634.
    Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF Ensemble Prediction System: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73–119, doi:10.1002/qj.49712252905.
    Nair, V., and G. E. Hinton, 2010: Rectified linear units improve restricted boltzmann machines. Proceedings, the 27th International Conference on Machine Learning (ICML-10), 21-24 Jun 2010, Haifa, Israel, 8 pp.
    Richardson, L. F., 1922: Weather Prediction by Numerical Process. Cambridge University Press, pp. xii + 236.
    Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136(1), 78–97.
    Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570–575, doi:10.1175/1520-0434(1990)005<0570:TCSIAA> 2.0.CO;2.
    Su, S.-H., H.-C. Kuo, L.-H. Hsu, and Y.-T. Yang, 2012: Temporal and spatial characteristics of typhoon extreme rainfall in Taiwan. J. Meteor. Soc. Japan, 90, 721–736.
    Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 2317–2330, doi:10.1175/ 1520-0477(1993)074<2317:EFANTG>2.0.CO;2.
    Trilaksono, N. J., S. Otsuka, and S. Yoden, 2012: A time-lagged ensemble simulation on the modulation of precipitation over West Java in January–February 2007. Mon. Wea. Rev., 140, 601–616, doi:10.1175/MWR-D-11-00094.1.
    Tsuboki, K., and A. Sakakibara, 2002: Large-scale parallel computing of cloud resolving storm simulator. High Performance Computing, H. P. Zima et al. Eds., Springer, 243–259.
    Tsuboki, K., and A. Sakakibara, 2007: Numerical Prediction of High-Impact Weather Systems: The Textbook for the Seventeenth IHP Training Course in 2007. Hydrospheric Atmospheric Research Center, Nagoya University, and UNESCO, 273 pp.
    Wang, C.-C., H.-C. Kuo, Y.-H. Chen, H.-L. Huang, C.-H. Chung, Tsuboki, K., 2012. Effects of asymmetric latent heating on typhoon movement crossing Taiwan: the case of Morakot (2009) with extreme rainfall. J. Atmos. Sci. 69, 3172–3196.
    Wang, C.-C., H.-C. Kuo, T.-C. Yeh, C.-H. Chung, Y.-H. Chen, S.-Y. Huang, Y.-W. Wang, C.-H. Liu, 2013. High-resolution quantitative precipitation forecasts and simulations by the cloud-resolving storm simulator (CReSS) for Typhoon Morakot (2009). J. Hydrol. 506, 26–41. https://doi.org/10.1016/j.jhydrol.2013.02.018.
    Wang, C.-C., 2014: On the calculation and correction of equitable threat score for model quantitative precipitation forecasts for small verification areas: The example of Taiwan. Wea. Forecasting, 29, 788–798.
    Wang, C.-C., 2015. The more rain, the better the model performs—the dependency of quantitative precipitation forecast skill on rainfall amount for typhoons in Taiwan. Mon. Wea. Rev. 143, 1723–1748.
    Wang, C.-C., S.-Y. Huang, S.-H. Chen, C.-S. Chang, 2016: Cloud-resolving typhoon rainfall ensemble forecasts for Taiwan with large domain and extended range through time-lagged approach. Wea. Forecasting. 31, 151–172.
    Wang, C.-C., C.-S. Chang, Y.-W. Wang, C.-C. Huang, S.-C. Wang, Y.-S. Chen, K. Tsuboki, S.-Y. Huang, S.-H. Chen, P.-Y. Chuang, H. Chiu, 2021: Evaluating quantitative precipitation forecasts using the 2.5 km CReSS model for typhoons in Taiwan: an update through the 2015 Season., Atmosphere, 12, 1501. https://doi.org/ 10.3390/atmos12111501.
    Wang, C.-C., S.-H. Chen, K. Tsuboki, S.-Y. Huang, and C.-S. Chang, 2022: Application of Time-Lagged Ensemble Quantitative Precipitation Forecasts for Typhoon Morakot (2009) in Taiwan by a Cloud-Resolving Model. Atmosphere, 13, 585, https://doi.org/10.3390/atmos13040585.
    Wang, C.-C., S.-H. Chen, Y.-H. Chen, H.-C. Kuo, J. H. Ruppert, Jr., and K. Tsuboki, 2023: Cloud-resolving time-lagged rainfall ensemble forecasts for typhoons in Taiwan: Examples of Saola (2012), Soulik (2013), and Soudelor (2015). Weather Clim. Extrem., 40, 100555, DOI: 10.1016/j.wace.2023.100555.
    Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd Edition, Academic Press, Oxford.
    Yang, M.-J., S. A. Braun, and D.-S. Chen, 2011: Water budget of Typhoon Nari (2001). Mon. Wea. Rev., 139, 3809–3828, doi:10.1175/MWR-D-10-05090.1.
    Yuan, H., J. A. McGinley, P. J. Schultz, C. J. Anderson, and C. Lu, 2008: Short-range precipitation forecasts from time-lagged multimodel ensembles during the HMT-West-2006 campaign. J. Hydrometeor., 9, 477–491, doi:10.1175/2007JHM879.1.
    Zhang Y.-C., M.-S. Long, K.-Y. Chen, L.-X. Xing, R.-H. Jin, M. I. Jordan and J.-M. Wang, 2023: Article Skilful nowcasting of extreme precipitation with NowcastNet, Nature, 619, 526-532
    Zhang, T., W. Lin, Y. Lin, M. Zhang, H. Yu, K. Cao, and W. Xue, 2019: Prediction of Tropical Cyclone Genesis from Mesoscale Convective Systems Using Machine Learning. Wea. Forecasting, 34, 1035–1049, https://doi.org/10.1175/WAF-D-18-0201.1.

    下載圖示
    QR CODE