研究生: |
張馨云 Chang, Hsin-Yun |
---|---|
論文名稱: |
藉由鈀催化Heck醣苷化反應進行Pseudouridine的合成研究 Synthetic Studies of Pseudouridine via Palladium-catalyzed Heck-type Glycosylation Reaction |
指導教授: |
簡敦誠
Chien, Tun-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 22 |
中文關鍵詞: | C-核苷 、類尿嘧啶 、2’-脫氧類尿嘧啶 、Heck反應 |
英文關鍵詞: | C-nucleosidee, pseudouridin, 2’-deoxypseudouridine, Heck reaction |
DOI URL: | https://doi.org/10.6345/NTNU202203727 |
論文種類: | 學術論文 |
相關次數: | 點閱:127 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
C-nucleosides相較於N-nucleosides擁有較穩定的醣苷鍵,在醫藥化學及生物化學上具有應用的潛力。且在自然界中,存在許多C-nucleosides的天然物,具有多樣的生物活性,其中天然物pseudouridine及其衍生物2’-deoxypseudouridine為我們有興趣的化合物。本研究主要著重於利用Heck反應將醣體和具有碘取代的芳香及雜環化合物進行耦合,形成新的碳-碳醣苷鍵。改變以往需要使用到有毒且而昂貴的AsPh3作為配體,以雙芽基配體作為配體進行反應,發現也有很好的區位及立體選擇性。並將研究結果應用於2’-deoxypseudouridine及pseudouridine的合成。
The nucleosidic bond of C-nucleosides are much more stable than N-nucleosides, which allows potential applications of C-nucleosides in medi-cinal chemistry and chemical biology. Some of the naturally occurring C-nucleosides possess a wide variety of biological activities. We are particu-larly interested in the synthesis of pseudouridine and 2’-deoxypseudouridine. In this thesis, we employed Heck-type coupling reactions to form C-C bonds between the anomeric carbon of 1, 2-unhydrous sugar derivatives and aryl iodides or iodo-heterocycles. Instead of utilizing toxic and expensive AsPh3 as the ligand, tour study has showed that the use of bidentate ligands for Heck-type coupling reactions were highly regio- and stereoselective. The methodology is applicable to the synthesis of 2’-deoxypseudouridine and pseudouridine.
1. Haneishi T.; Okazaki T.; Hata T.; Tamura C.; Nomura M. J. Antibiot. 1971, 11, 797.
2. Martin J. Sweeney.; Fred A. Davis.; Gerald E. Gutowski.; Robert L Marnili, David H. Hoffman.; Gerald A. Poore. Cancer Res. 1973, 33, 2619.
3. Bzowska A.; Kulikowska E.; Shugar D. Biochim Biophys Acta. 1992, 3, 239.
4. Yuzo Nakagawa.; Hi&o KanE.; Yoshiko Tsukuda.; Hirozo Koyama. Te-trahedron Lett. 1967, 42, 4105.
5. Cohn, W. E. J. Biol. Chem. 1960, 235, 1488.
6. Junhui Ge.; Yi-Tao Yu. Trends Biochem Sci. 2013, 38, 210.
7. Starr, J.L.; Fefferman, R. J. Biol. Chem. 1964, 239, 3457.
8. Dubin, D.T.; Günalp, A. Biochim. Biophys. Acta. 1967, 134, 106.
9. Noon, K.R.; Bruenger, E.; McCloskey, J.A. J. Bacteriol. 1998, 180, 2883.
10. William A. Cantara.; Pamela F. Crain.; Jef Rozenski.; James A. McCloskey.; Kimberly A. Harris1.; Xiaonong Zhang.; Franck A. P. Vendeix.; Daniele Fabris1.; Paul F. Agris. Nucleic Acids Res. 2011, 39, 195.
11. Michael Charette.; Michael W. Grat.; IUBMB Life. 2000, 49, 341.
12. Tomoko Hamma.; Adrian R.; Ferre-D’ Amare.; Chem Biol. 2006, 13, 1125.
13. Johnson, L.; Soll, D. Proc. Natl. Acad. Sci. 1970, 67, 943.
14. Patrick J. Grohar.; Christine S. Chow. Tetrahedron Lett. 1999, 40, 2049.
15. Hanessian, S.; Machaalani, R. Tetrahedron Lett. 2003, 44, 8321.
16. Yu-Cheng Chang; Jayatilake Herath; Tony H.-H. Wang; Christine S. Chow. Bioorg. Med. Chem. 2008, 16, 2676.
17. Desaulniers, J.-P.; Ksebati, B.; Christine S. Chow. Org. Lett. 2003, 5, 4093.
18. Hanessian, S.; Marcotte, S.; Machaalani, R.; Haung, G.; Pierron, J.; Loise-leur, O. Tetrahedron 2006, 62, 5201.
19. Stoop, M.; Zahn, A.; Leumann, C. J. Tetrahedron 2007, 63, 3440.
20. Guianvarc’h, D.; Fourrey, J. L.; Huu Dau, M.; Guerineau, V.; Benhida, R. J. Org. Chem. 2002, 67, 3724.
21. Adamo, M.F. A.; Adlington, R. M.; Baldwin, J. E.; Day, A. L. Tetrahedron 2004, 60, 841.
22. Veronse, A. C.; Morelli, C. F. Tetrahedron Lett. 1998, 39, 3853.
23. Barrett, A. G. M.; Broughton, H. B.; Attwood, S. V.; Gunatilaka, A. A. L. J. Org. Chem. 1986, 51, 495.
24. Chen, J. C.; Drach, J. C.; Townsend, L. B. J. Org. Chem. 2003, 68, 4170.
25. Gudmundsson, K. S.; Drach, J. C.; Townsend, L. B. J. Org. Chem. 1998, 63, 984.
26. Brown, D. M.; Ogden, R. C. J. Chem. Soc., Perkin. Trans 1 1981, 4, 723.
27. Rothman, J. H. J. Org. Chem. 2009, 74, 925.
28. Singh, I.; Seitz, O. Org. Lett. 2006, 8, 4319.
29. Chaudhuri, N. C.; Kool, E. T. Tetrahedron Lett. 1995, 36, 1795.
30. Chen, D. W.; Beuscher, A. E.; Stevens, R. C.; Wirsching, P.; Lerner, R. A.; Janda, K. D. J. Org. Chem. 2001, 66, 1725.
31. Liu, W.; Walker, J. A., II; Chen, J. J.; Wise, D. S.; Townsend, L. B. Tetrahe-dron Lett. 1996, 37, 5325.
32. Girgis, N. S.; Michael, M. A.; Smee, D. F.; Alaghamandan, H. A; Robins, R. J.; Cottam, H. B. J. Med. Chem. 1990, 33, 2750.
33. Arai, I.; Daves, G. D. J. Am. Chem. Soc. 1978, 100, 287.
34. Zhang, H. C.; Daves, G. D. J. Org. Chem. 1992, 57, 4690.
35. Farina, V.; Krishnan, B.; J. Am. Chem. Soc. 1991, 113, 958.
36. Raboisson, P.; Baurand, A.; Cazenave, J. P.; Gachet, C.; Schultz, D.; Spiess, B.; Bourguignon, J. J. J. Org. Chem. 2002, 67, 8063.
37. Zhang, H. C.; Daves, G. D. J. Org. Chem. 1993, 58, 2557.
38. 何智豊,國立臺灣師範大學碩士論文, 2008年。
39. Ireland, R.E.; Thaisrivongs, S.; Vanier, N.; Wilcox, C.S. J. Org. Chem. 1980, 45, 48.
40. Farr, R.N.; Daves, G.D., Jr. J. Carbohydr. Chem. 1990, 9, 653.
41. Larsen, E.; Jorgensen, P.T.; Sofan, M.A.; Pederson, E.B. Synthesis 1994, 10, 1037.
42. E.-K. Kim.; R. Krishnamurthy. Chem.Commun, 2015, 51, 5618.
43. (a) Pankiewicz, K.; Matsuda, A.; Watanabe, K.A. J. Org. Chem. 1982, 47, 485. (b) Chen, J.J; Walker, J.A., II.; Liu, W.; Wise, D.S.; Townsend, L.B. Tetrahedron Lett. 1995, 36, 8363. (c) Gudmundsson, K.S.; Williams, J.D.; Drach, J.C.; Townsend, L.B. J. Med. Chem. 2003, 46, 1449. (d) Wang, Z-X.; Wiebe, L.I.; De Clercq, E.; Balzarini, J. Can. J. Chem. 2000, 78, 1081.
44. (a) Fraley, A. W.; Chem, D.; Johnson, K.; McLaughlin, L.W. J. Am. Chem. Soc. 2003, 125, 616. (b) Li J-S.; Gold, B. J. Org. Chem. 2005, 70, 8764.
45. Amator, C.; Jutand,A.; M’Barki, M. Organometallics 1995, 14, 1818.
46. Colin B. Reese.; Qinpei Wu. Org. Biomol. Chem. 2003, 1, 3160.
47. Hyo-Joong Kim.; Nicole A. Leal.; Shuichi Hoshika.; Steven A. Benner. J. Org. Chem. 2014, 79, 3194.