研究生: |
陳宗泰 Zong-Tai Chen |
---|---|
論文名稱: |
肌肉生長抑制素單體型和優秀運動選手相關性之探討 Association of myostatin gene haplotype with elite athletes |
指導教授: |
謝伸裕
Hsieh, Shen-Yu |
學位類別: |
碩士 Master |
系所名稱: |
運動競技學系 Department of Athletic Performance |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 43 |
中文關鍵詞: | 生長變異因子-8 、基因多形性 、對偶基因 、舉重 、體操 |
英文關鍵詞: | GDF-8, polymorphisms, allele, weight lifer, gymnast |
論文種類: | 學術論文 |
相關次數: | 點閱:142 下載:13 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肌肉生長抑制素 (myostatin) 又名為第八生長分化因子-8 (growth and differentiation factor-8, GDF-8),主要的作用為抑制肌肉過度地生長。Myostatin基因位於人體第二對染色體長臂32.2處,共由9262對鹼基對所組成。目前已知不論是藉由人工方式或自然突變使myostatin基因百分之百喪失其功能後,此動物的肌肉量將明顯大於相同物種的1~2倍。至今,已有至少20種myostatin基因多型性被發現於不同人種中。
目的:本研究探討臺灣地區優秀舉重和體操運動員之myostatin基因單體型頻率是否有別於對照組。
方法:本研究採集國內優秀舉重和體操選手41位及控制組50位之DNA檢體,進行myostatin基因定序和單體型分析後,以SPSS統計套裝軟體進行相關的統計顯著性檢定,以χ2-test檢定法進行 (α=.05) 。
結果:沒有任何舉重選手帶有MSTN +2278 G/A (rs35481413) A對偶基因者;體操選手帶有MSTN +2278 G/A (rs35481413) A對偶基因者的比例為8.3%;對照組則為3.1%,但未達顯著差異 (p>.05)。在單體型分析部分,並未發現優秀運動員和對照組之間的明顯差異 (p>.05)。
結論:優秀運動員的myostatin基因多形性和單體型頻率未和對照組有明顯差異,意指myostatin基因可能無法用來分辨優秀運動員,如:舉重與體操選手。
Myostatin in animals is also called growth and differentiation factor-8 (GDF-8). It is a negative regulator of skeletal muscle growth. The myostatin gene on chromosome 2 (2q32.2) of human is composed by 9262 bases. Individual muscles of the mutant animals can be as much as two times larger than those of their normal species if the myostatin gene lost it’s functions. At the moment, there were more than 20 myostatin ploymorphisms discovered in different human races.
Purpose: To investigate whether myostatin gene haplotypes of elite weight lifters and gymnasts in Taiwan are different from controls.
Methods: We examined 41 elite athletes (weight lifter and gymnast) and 50 controls, myostatin genotypes and haplotypes was identified by sequencing. Differences were evaluated using SPSS χ2-test (α=.05).
Results: The frequency of myostatin +2278 G/A (rs35481413) A allele was higher in gymnasts and controls as compared to elite weight lifters (8.3% / 3.1% / 0%), but was not statistically significant (p > .05). In the part of haplotype analysis, there was no significant difference between elite athletes and controls (p > .05).
Conclusion: Myostatin polymorphisms and haplotypes of elite athletes in this study was not significantly differ from controls, it means that myostatin gene may not be a candidate gene for searching elite athletes, especially for weight lifers and gymnasts.
黃淑貞、張秀卿 (2007)。試述女子競技體操規則的變化與技術發展的格局。大專體育,90,39-42。
Amthor, H., Macharia, R., Navarrete, R., Schuelke, M., Brown, S. C., Otto, A., et al. (2007). Lack of myostatin results in excessive muscle growth but impaired force generation. Proceedings of The National Academy of Sciences, 104, 1835-1840.
Derynck, R., Zhang, Y.E. (2003). Smad-dependent and Smad-independent pathways in TGF-beta family signaling. Nature. 425 (6958), 577-584.
Ferrell, R. E., Conte, V., Lawrence, E. C., Roth, S. M., Hagberg, J. M., & Hurley, B. F. (1999). Myostatin inhibition and performance frequent sequence variation in the human myostatin (GDF8) gene as a marker for analysis of muscle-related phenotypes. Genomics, 62, 203-207.
Fedoruk, M. N., & Rupert, J. L. (2008). Myostatin inhibition: a potential performance enhancement strategy?. Scandinavian Journal of Medicine & Science in Sports, 18 (2), 123-131.
Ivey, F. M., Roth, S. M., Ferrell, R. E., Tracy, B. L., Lemmer, J. T., Hurlbut, D. E., et al. (2000). Effects of age, gender, and myostatin genotype on the hypertrophic response to heavy resistance strength training. Journal of Gerontology: Medical Sciences, 55A (11), M641-M648.
Ji, S., Losinski, R. L., Cornelius, S. G., Frank, G. R., Willis, G. M., Gerrard, D. E., et al. (1998). Myostatin expression in porcine tissues: tissue specificity and developmental and postnatal regulation. American Journal of Physiology, 275, R1265-R1273.
Joulia-Ekaza, D., Cabello, G. (2006). Myostatin regulation of muscle development: Molecular basis, natural mutations, physiopathological aspects. Experimental Cell Research, 312, 2401-2414.
Kostek, M. A., Angelopoulos, T. J., Clarkson, P. M., Gordon, P. M., Moyna, N. M., Visich, P. S., et al (2009). Myostatin and follistatin polymorphisms interact with muscle phenotypes and ethnicity. Medicine and Science in Sports and Exercise, 41 (5), 1063-1071.
Lee, S.J., McPherron, A.C. (2001). Regulation of myostatin activity and muscle growth. Proceedings of The National Academy of Sciences. 98 (16), 9306-9311.
McPherron, A. C., Lawler, A. M., & Lee, S. J. (1997). Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature, 387, 83-90.
Ma, K., Mallidis, C., Artaza, J., Taylor, W., Gonzalez-Cadavid, N., & Bhasin, S. (2001). Characterization of 50-regulatory region of human myostatin gene: Regulation by dexamethasone in vitro. American Journal of Physiology - Endocrinology and Metabolism, 281, E1128-E1136.
McPherron, A. C., & Lee, S. J. (1997). Double muscling in cattle due to mutations in the myostatin gene. Proceedings of The National Academy of Sciences, 94, 12457-12461.
Saunders, M. A., Good, J. M., Lawrence, E. C., Ferrell, R. E., Li, W. H., Nachman, M. W. (2006). Human adaptive evolution at myostatin (GDF8), a regulator of muscle growth. American Journal of Human Genetics. 79, 1089-1097.
Schuelke, M., Wagner, K. R., Stolz, L. E., Hubner, C., Riebel, T., Komen, W., et al. (2004). Myostatin mutation associated with gross muscle hypertrophy in a child. New England Journal of Medicine, 350, 2682-2688.
Seibert, M. J., Xue, Q. L., Fried, L. P., Walston, J. D. (2001). Polymorphic variation in the human myostatin (GDF-8) gene and association with strength measures in the women’s health and aging study II cohort. Journal of The American Geriatrics Society, 49, 1093-1096.
Sharma, M., Kambadur, R., Matthews, K. G., Somers, W. G., Devlin, G. P., Conaglen, J. V., et al. (1999). Myostatin, a transforming growth factor-b superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. Journal of Cellular Physiology, 180, 1–9.
Thomas, M., Langley, B., Berry, C., Sharma, M., Kirk, S., Bass, J., et al. (2000). Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. Journal of Biological Chemistry, 275, 40235-40243.
Wagner, K. R., Liu, X., Chang, X., & Allen, R. E. (2005). Muscle regeneration in the prolonged absence of myostatin. Proceedings of The National Academy of Sciences, 102 (7), 2519-2524.
Zhang, Z. L., He, J. W., Qin, Y. J., Hu, Y. Q., Li, M., Zhang, H., et al. (2008). Association between myostatin gene polymorphisms and peak BMD variation in Chinese nuclear families. International Osteoporosis Foundation and National Osteoporosis Foundation. 19 (1), 39-47.
Zhu, X., Topouzis, S., Liang, L.F., Stotish, R.L. (2004). Myostatin signaling through Smad2, Smad3 and Smad4 is regulated by the inhibitory Smad7 by a negative feedback mechanism. Cytokine. 26 (6), 262-272.