研究生: |
蕭智新 Chin-Shing Shiao |
---|---|
論文名稱: |
雙頻道葡萄糖/尿素碳六十固定化酵素選擇性電極之研製與應用 Preparation and Application of two-channeled Enzyme Electrodes for Glucose and Urea |
指導教授: |
施正雄
Shih, Jeng-Shong |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 115 |
中文關鍵詞: | 碳六十 、大環胺醚 、葡萄糖氧化酵素 、尿素水解酵素 、離子選擇性電極 、雙頻道 、酵素電極 |
英文關鍵詞: | C60, cryptand, glucose oxidase, urease, ISE, two-channeled, enzyme electrode |
論文種類: | 學術論文 |
相關次數: | 點閱:249 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雙頻道葡萄糖/尿素碳六十固定化酵素選擇性電極之研製與應用
中文摘要
本研究合成固定化碳六十/葡萄糖氧化酵素(C60-Glucose Oxidase)和固定化碳六十/尿素水解酵素(C60-Urease)並分別應用在葡萄糖及尿素選擇性C60-Cryptand[2,2] / PVC電極感測系統中,用以偵測待測溶液中的葡萄糖或尿素分子。酵素所以能充當檢測生體成分的工具,是因其基質特異性高且能讓反應在和緩條件下進行。在C60-Cryptand[2,2]葡萄糖薄膜電極系統中,偵測葡萄糖分子被葡萄糖氧化酵素催化為葡萄糖酸經解離得到的氫離子,而C60-Cryptand[2,2]尿素選擇性薄膜電極中,偵測水溶液中尿素分子經尿素水解酵素催化所形成的銨根離子。實驗中將分別探討碳六十固定化酵素及PVC的含量、溫度、pH值的改變及干擾因子對電極電位變化的影響。在葡萄糖選擇性薄膜電極偵測系統中,固定化C60-Glucose Oxidase在30oC左右的溫度下,有很好的催化效果,而最適pH值則在7附近,且發現當膜上所含C60-Glucose Oxidase的量增加時,催化的效果越明顯。在干擾係數的測定方面,一些血液中常見的鹼金族及鹼土族的離子選擇性係數在10-2左右。在尿素選擇性薄膜電極偵測系統中,最適pH值也在7附近而最佳溫度為室溫。在干擾離子方面,大部分干擾離子的選擇性係數也在10-2左右,血液中常見的有機物如半乳糖、半胱銨酸、酪銨酸及維他命C,幾乎對此系統於葡萄糖及尿素的測定上沒影響。
參考資料
1. 呂鋒洲; 林仁混. 基礎酵素學. 1991.
2. 陳治誠. 生化感測器技術簡介. 科儀新知. 1993, 15(2), 71-81.
3. 陳國誠. 微生物酵素工程學. 1989
4. Chuang,W. and Shih, J. S., Preparation and Application of Immobilized-Glucose Oxidase Enzyme in Fullerene C60-Coated Piezoelectric Quartz Crystal Glucose Sensor, Sensors & Actuators 2001, 81(1), 1-8
5. Chang, M. S. and Shih, J. S., Fullerene-Cryptand Coated Piezoelectric Crystal Membrane Glucose Enzyme Sensor, Sensors & Actuators, 2000, 67, 275-281
6. Bowers, Larry D. Application of immobilized biocatalysts in chemical analysis. Anal. Chem. 1986, 58(4), 513A-530A.
7. Liu, B.; Hu, R; Deng, J. Fabrication of an amperometric biosensor based on the immobilization of glucose oxidase in a modified molecular sieve matrix. Analyst. 1997, 122, 821-826
8. Liu, B.; Hu, R; Deng, J. Fabrication of an amperometric biosensor based on the immobilization of glucose oxidase in a modified molecular sieve matrix. Analyst. 1997, 122, 821-826
9. Herdan, J. M.; Balulescu, M.; Cira, O. Enantioselective hydrolysis of racemic esters using pig liver esterase. Journal of Molecular Catalysis A:Chemical. 1996, 107, 409-414.
10. Nursel Pekel; Bekir Salih; Olgun Güven Activity studies of glucose oxidase immobilized onto poly(N-vinylimidazole) and metal ion-chelated poly(N-vinylimidazole) hydrogels. Journal of Molecular Catalysis B: Enzymatic 2003, 21, 273-282
11. Godjevargova, Ts.; Dimov, A.; Vassileva, N. Effects of chemical modifications and immobilization of glucose oxidase onto acrylonitrile copolymer membranes on membrance potential and membrance charge density Journal of Membrane Science. 1996 , 116, 273-278.
12. Sinan Akgol; Handan Yavuz; Serap S¸ enel; Adil Denizli. Glucose oxidase and catalase adsorption onto Cibacron Blue F3GA-attached microporous polyamide hollow-fibres Reactive & Functional Polymers 2003, 55, 45-51
13. Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F., Smalley, R. E. C60:Buckminsterfullerene. Nature. 1985, 318, 162-163.
14. Hawkins, J. M.; Meyer, A.; Lewis, T. A.; Loren, S.; Hollander, F. J. Crystal Structure of Osmylated C60 : confirmation of the soccer Ball framework. Science. 1991, 252, 312-313
15. Scrirens, W. A.; Bedworth,P. V.; Tour,J. M. Purification of gram quanties of C60. A new inexpensive and facile method. J. Am. Chem. Soc. 1992, 114, 7917
16. Chen, W.; Xu, Z. Temperature dependence of C60 solubility in different solvent. Fullerence Science And Technology. 1998, 6 , 695
17. Haufler, R. E.; Conceicao, J.; Chibante, L. P. F.; Chai, Y.; Byrne, N. E.; Flanagan, S.; Haley, M. M.; O’Brien, S. C.; Pan, C.; Xiao, Z.; Billups, W. E.; Ciufolini, M. A.; Smalley, R. H. Efficient production of C60 (buckminsterfullerene), C60H36, and the solvated buckide ion. J. Phys. Chem. 1990, 94(24), 8634-8636.
18. Pederson, C.J. Crystalline salt complexes of macrocyclic polyethers J. Am. Chem. Soc. 1970,92,386-388
19. Lehn, J. M.; Sauvage, J. P. Cryptates. XVI. [2]-Cryptates. Stability and selectivity of alkali and alkaline-earth macrobicyclic complexes J. Am. Chem. Soc. 1975, 97, 6700-6707
20. Suzuki, K.; Yamada, H.; Sato, K.; Watanabe, K.; Hihamoto, H.; Tobe, Y.; Kobiro, K. Design and synthesis of highly selective ionophores for lithium ion based on 14-crown-4 derivatives for an ion-selective electrode Anal. Chem. 1993, 65, 3404-3410
21. Jeng, J. and Shih, J. S. Sodium Ion Selective Electrode Based on Crown Ether Phosphotungstenic Acid Precipitates Analyst, 1984, 109, 641-643
22.Bijay Sarkar; Pritam Mukhopadhyay; Parimal K. Bharadwaj Laterally non-symmetric aza-cryptands: synthesis, catalysis and derivatization to new receptors Bijay Sarkar, Coordination Chemistry Reviews 2003, 236, 1~13.
23. Pearson, R. G. Hard and soft acids and bases J. Am. Chem. Soc. 1963, 85, 3533-3539.
24. Philip, C. J.; Jacqueline, M. G.; Stephen, F. L.; Edward, R. T. Complexation of alkali metal ions by the cryptand 4,7,13,16-tetraoxa-1,10-diazabicyclo[8.8.5] tricosane,C22C5.A structural and equilibrium study. Inorg. Chem. 1992, 31, 3398-3404.
25.Frensdorff, H. K. Stability constants of cyclic polyether complexes with univalent cations. J. Am. Chem. Soc. 1971, 93, 600-606.
26. Satsuo, K.; Ajay, B.; Yumi, F.; Hiroyuki, M. Copper(II)-selective electrode using thiuram disulfide neutral carriers. Anal. Chem. 1988, 60, 2464-2467.
27.Cox, B. G.; Schneider, H.; Strroka, J. Kinetics of alkali metal complex formation with cryptands in methanol. J. Am. Chem. Soc. 1978, 100, 4746-4749.
28.Richard, S. H.; Leonidas, G. B. Nitrate-selective electrode developed by electrochemically mediated imprinting/doping of polypyrrole Anal. Chem. 1995, 67, 1654-1660
29. Simmons, H. E.; Park, C. H. Macrobicyclic amines. I. Out-in isomerism of 1,(k+2)-diazabicyclo[k.l.m]alkanes J. Am. Chem. Soc. 1968, 90, 2428-2429.
30. Hans K. Frensdorff Stability constants of cyclic polyether complexes with univalent cations J. Am. Chem. Soc.; 1971; 93(3); 600-606.
31. Chiou, C. S. and Shih, J. S. Multifunctional Cryptand Coated Piezoelectric Quartz Crystal Detector for Cations, Anions and Organic Molecules, Anal. Chim. Acta. 1999, 392, 125-133
32. Wei, L. F. and Shih, J. S. Fullerene-Cryptand Coated Piezoelectric Crystal Urea Sensor Based on Urease, Anal. Chim. Acta. 2001, 437, 77-85
33. Chiou, C. S.; Shih, J. S. Bifunctional cryptand modifier for capillary electrophoresis in separation of inorganic/organic anions and inorganic cations. Analyst 1996, 121, 1107-1110.
34. Allen J. Bard& Larry R. Faulkner. “Electrochemical Method”, 1980, John Wiley& Sons, U.S.A.
35. Aodhmer, C.; Zhiqiang, G.; Andrzej, L.: Ari, I. All-solid-state sodium-selective electrode based on a calixarene ionophore in a poly(vinyl chloride) membrane with a polypyrrole solid contact. Anal. Chem.1992, 64, 2496-2501
36. Suresh, K. S.; Vinod, K. G.; Suresh, PVC-based 2,2,2-cryptand sensor for zinc ions J. Anal. Chem. 1996, 68, 1272-1275.
37. Jordi, B.; Sylvia, D.; Leonidas, G. B. Selective electrodes for silver and anions based on polymeric membranes containing complexes of triisobutylphosphine sulfide with silver. Anal. Chem. 1991, 63, 1585-1589.
38. Maria de los A.; Arada Pèrez; Leonel Marín; Josefina Calvo Quintana; Mehrdad Yazdani-Pedram. Influence of different plasticizers on the response of chemical sensor based on polymeric membranes for nitrate ion determination. Sensors & Actuators B 2003, 89, 262-268
39. Vasile, V. C.; Miklos, E.; James, S. R.; Timothy, A. J.; Michael, R. N.; Richard, P. B. Aliphatic polyurethane as a matrix for pH sensors: effects of native sites and added proton carrier on electrical and potentiometric properties. Talanta 1996, 43, 143-151.
40. Jain. A. K.; Gupta, V. K.; Singh, L. P.; Khurana, U. Macrocycle based membrane sensor for the determination of cobalt(II) ions Analyst 1997, 122, 583-586.
41. Lee, H. J.; Hong, U. S.; Lee, D. K.; Shin, J. H.; Nam, H.; Cha, G. S. Solvent-processible polymer membrane-based liquid junction- free reference electrode Anal. Chem. 1998, 70, 3377-3383.
42. Keplinger, E. J.; Jachimowicz, A.; Kohl, F. Water flux across neutral carrier membranes Anal. Chem. 1998, 70, 4271-4279.
43. Kimura, K.; Sunagawa, T,.; Yajima, S.; Miyake, S.; Yokoyama, Y. Neutral carrier-type ion sensors based on sol-gel-derived membranes incorporating a bis(crown ether) derivative by covalent bonding. Anal. Chem. 1998, 70, 4309-4313.
44. Marin, H.; Peter, M, G,; Werner, E. M.; Simon, W. Membrane technology and dynamic response of ion-selective liquid-membrane electrodes. Anal. Chem. 1991, 63, 1380-1386.
45.Wang, D. and Shih, J. S. Cesium Ion Selective Electrode Based on 15-Crown-5-PW, Analyst 1985, 110, 635-638
46. Lai, M. T. and Shih, J. S. Mercury (II) and Silver (I) Ion Selective Electrodes Based on Dithia Crown Ethers, Analyst, 1986, 111, 891-895
47. Sheen, S. R. and Shih, J. S. Lead (II) Ion Selective Electrodes Based on Crown Ethers, Analyst, 1992, 117, 1691-1695
48. Yuan, R.; Chai, Y. Q.; Liu, D.; Gao, D.; Li, J. Z.; Yu, R. Q. Schiff base complexes of cobalt(II) as neutral carriers for highly selective iodide electrodes Anal. Chem. 1993, 65, 2572-2575.
49. Stacy, A. O.; Sylvia, D.; Leonidas, G. B. Nitrogen oxide gas sensor based on a nitrite-selective electrode. Anal. Chem. 1991, 63, 1278-1281
50. Oesch, U.; Brzozka, Z.; Xu, A.; Rusterholz, B.; Suter, G.; Pham, H. V.; Welti, D. H.; Ammann, D.; Pretsch, E.; Simon, W. Design of neutral hydrogen ion carriers for solvent polymeric membrane electrodes of selected pH range. Anal. Chem. 1986, 58, 2285-2289.